Visible to the public Biblio

Filters: Keyword is jamming  [Clear All Filters]
2023-03-17
Jakubisin, Daniel J., Schutz, Zachary, Davis, Bradley.  2022.  Resilient Underwater Acoustic Communications in the Presence of Interference and Jamming. OCEANS 2022, Hampton Roads. :1–5.
Acoustic communication is a key enabler for underwater Internet of Things networks between autonomous underwater platforms. Underwater Internet of Things networks face a harsh communications environment and limited energy resources which makes them susceptible to interference, whether intentional (i.e., jamming) or unintentional. Resilient, power efficient waveforms and modulation schemes are needed for underwater acoustic communications in order to avoid outages and excessive power drain. We explore the impact of modulation scheme on the resiliency of underwater acoustic communications in the presence of channel impairments, interference, and jamming. In particular, we consider BFSK and OFDM schemes for underwater acoustic communications and assess the utility of Polar coding for strengthening resiliency.
ISSN: 0197-7385
2022-12-09
Reynvoet, Maxim, Gheibi, Omid, Quin, Federico, Weyns, Danny.  2022.  Detecting and Mitigating Jamming Attacks in IoT Networks Using Self-Adaptation. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :7—12.
Internet of Things (IoT) networks consist of small devices that use a wireless communication to monitor and possibly control the physical world. A common threat to such networks are jamming attacks, a particular type of denial of service attack. Current research highlights the need for the design of more effective and efficient anti-jamming techniques that can handle different types of attacks in IoT networks. In this paper, we propose DeMiJA, short for Detection and Mitigation of Jamming Attacks in IoT, a novel approach to deal with different jamming attacks in IoT networks. DeMiJA leverages architecture-based adaptation and the MAPE-K reference model (Monitor-Analyze-Plan-Execute that share Knowledge). We present the general architecture of DeMiJA and instantiate the architecture to deal with jamming attacks in the DeltaIoT exemplar. The evaluation shows that DeMiJA can handle different types of jamming attacks effectively and efficiently, with neglectable overhead.
2022-10-16
Zhang, Ming, Shang, Yong, Zhao, Yaohuan.  2020.  Strategy of Relay Selection and Cooperative Jammer Beamforming in Physical Layer Security. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). :1–6.
In this paper, a novel strategy of relay selection and cooperative jammer beamforming is proposed. The proposed scheme selects one node from the intermediate nodes as relay and the rest nodes as friendly jammers. The relay operates in amplify-and-forward (AF) strategy. Jammer weights are derived to null the jamming signals at the destination and relay node and maximize the jamming signal at the eavesdropper. Furthermore, a closed-form optimal solution of power allocation between the selected relay and cooperative jammers is derived. Numerical simulation results show that the proposed scheme can outperform the conventional schemes at the same power consumption.
2022-06-09
Olowononi, Felix O., Anwar, Ahmed H., Rawat, Danda B., Acosta, Jaime C., Kamhoua, Charles A..  2021.  Deep Learning for Cyber Deception in Wireless Networks. 2021 17th International Conference on Mobility, Sensing and Networking (MSN). :551–558.
Wireless communications networks are an integral part of intelligent systems that enhance the automation of various activities and operations embarked by humans. For example, the development of intelligent devices imbued with sensors leverages emerging technologies such as machine learning (ML) and artificial intelligence (AI), which have proven to enhance military operations through communication, control, intelligence gathering, and situational awareness. However, growing concerns in cybersecurity imply that attackers are always seeking to take advantage of the widened attack surface to launch adversarial attacks which compromise the activities of legitimate users. To address this challenge, we leverage on deep learning (DL) and the principle of cyber-deception to propose a method for defending wireless networks from the activities of jammers. Specifically, we use DL to regulate the power allocated to users and the channel they use to communicate, thereby luring jammers into attacking designated channels that are considered to guarantee maximum damage when attacked. Furthermore, by directing its energy towards the attack on a specific channel, other channels are freed up for actual transmission, ensuring secure communication. Through simulations and experiments carried out, we conclude that this approach enhances security in wireless communication systems.
2022-05-10
Pham, Thanh V., Pham, Anh T..  2021.  Energy-Efficient Friendly Jamming for Physical Layer Security in Visible Light Communication. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
This work studies an energy-efficient jamming scheme for enhancing physical layer security in visible light communication (VLC). We consider a VLC system where multiple LED luminaries are deployed together with a legitimate user (i.e., Bob) and passive eavesdroppers (i.e., Eves). In such a scenario, the closest LED luminary to Bob serves as the transmitter while the rest of the luminaries act as jammers transmitting artificial noise (AN) to possibly degrade the quality of Eves' channels. A joint design of precoder and AN is then investigated to maximize the energy efficiency (EE) of the communication channel to Bob while ensuring a certain amount of AN power to confuse Eves. To solve the design problem, we make use of a combination of the Dinkelbach and convex-concave procedure (CCCP), which guarantees to converge to a local optimum.
2022-05-06
Liu, Yao, Li, Luyu, Fan, Rong, Ma, Suya, Liu, Xuan, Su, Yishan.  2021.  A Physical Layer Security Mechanism based on Cooperative Jamming in Underwater Acoustic Sensor Networks. 2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops). :239—243.
Due to broadcast nature of acoustic signal, underwater acoustic sensor networks face security challenge. In the paper, we propose a physical layer security transmission scheme with cooperative jamming. The proposed scheme takes advantage of the long propagation delay of the underwater acoustic channel to interfere with eavesdropper without affecting the reception of intended users. The results of both simulation and field experiment show that the proposed mechanism can improve the secrecy capacity of the network and effectively jam eavesdropper.
2022-04-19
Zheng, Tong-Xing, Yang, Ziteng, Wang, Chao, Li, Zan, Yuan, Jinhong, Guan, Xiaohong.  2021.  Wireless Covert Communications Aided by Distributed Cooperative Jamming Over Slow Fading Channels. IEEE Transactions on Wireless Communications. 20:7026–7039.
In this paper, we study covert communications between a pair of legitimate transmitter-receiver against a watchful warden over slow fading channels. There coexist multiple friendly helper nodes who are willing to protect the covert communication from being detected by the warden. We propose an uncoordinated jammer selection scheme where those helpers whose instantaneous channel gains to the legitimate receiver fall below a pre-established selection threshold will be chosen as jammers radiating jamming signals to defeat the warden. By doing so, the detection accuracy of the warden is expected to be severely degraded while the desired covert communication is rarely affected. We then jointly design the optimal selection threshold and message transmission rate for maximizing covert throughput under the premise that the detection error of the warden exceeds a certain level. Numerical results are presented to validate our theoretical analyses. It is shown that the multi-jammer assisted covert communication outperforms the conventional single-jammer method in terms of covert throughput, and the maximal covert throughput improves significantly as the total number of helpers increases, which demonstrates the validity and superiority of our proposed scheme.
Conference Name: IEEE Transactions on Wireless Communications
2022-03-15
Natalino, Carlos, Manso, Carlos, Vilalta, Ricard, Monti, Paolo, Munõz, Raul, Furdek, Marija.  2021.  Scalable Physical Layer Security Components for Microservice-Based Optical SDN Controllers. 2021 European Conference on Optical Communication (ECOC). :1—4.

We propose and demonstrate a set of microservice-based security components able to perform physical layer security assessment and mitigation in optical networks. Results illustrate the scalability of the attack detection mechanism and the agility in mitigating attacks.

2022-03-01
Man, Jiaxi, Li, Wei, Wang, Hong, Ma, Weidong.  2021.  On the Technology of Frequency Hopping Communication Network-Station Selection. 2021 International Conference on Electronics, Circuits and Information Engineering (ECIE). :35–41.
In electronic warfare, communication may not counter reconnaissance and jamming without the help of network-station selection of frequency hopping. The competition in the field of electromagnetic spectrum is becoming more and more fierce with the increasingly complex electromagnetic environment of modern battlefield. The research on detection, identification, parameter estimation and network station selection of frequency hopping communication network has aroused the interest of scholars both at home and abroad, which has been summarized in this paper. Firstly, the working mode and characteristics of two kinds of FH communication networking modes synchronous orthogonal network and asynchronous non orthogonal network are introduced. Then, through the analysis of FH signals time hopping, frequency hopping, bandwidth, frequency, direction of arrival, bad time-frequency analysis, clustering analysis and machine learning method, the feature-based method is adopted Parameter selection technology is used to sort FH network stations. Finally, the key and difficult points of current research on FH communication network separation technology and the research status of blind source separation technology are introduced in details in this paper.
2021-12-20
Twardokus, Geoff, Rahbari, Hanif.  2021.  Evaluating V2V Security on an SDR Testbed. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–3.
We showcase the capabilities of V2Verifier, a new open-source software-defined radio (SDR) testbed for vehicle-to-vehicle (V2V) communications security, to expose the strengths and vulnerabilities of current V2V security systems based on the IEEE 1609.2 standard. V2Verifier supports both major V2V technologies and facilitates a broad range of experimentation with upper- and lower-layer attacks using a combination of SDRs and commercial V2V on-board units (OBUs). We demonstrate two separate attacks (jamming and replay) against Dedicated Short Range Communication (DSRC) and Cellular Vehicle-to-Everything (C-V2X) technologies, experimentally quantifying the threat posed by these types of attacks. We also use V2Verifier's open-source implementation to show how the 1609.2 standard can effectively mitigate certain types of attacks (e.g., message replay), facilitating further research into the security of V2V.
2021-11-08
Zhu, Tian, Tong, Fei.  2020.  A Cluster-Based Cooperative Jamming Scheme for Secure Communication in Wireless Sensor Network. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). :1–5.
The environment of wireless sensor networks (WSNs) makes the communication not only have the broadcast nature of wireless transmission, but also be limited to the low power and communication capability of sensor equipment. Both of them make it hard to ensure the confidentiality of communication. In this paper, we propose a cluster-based cooperative jamming scheme based on physical layer security for WSNs. The mathematical principle of the scheme is based on the design principle of code division multiple access. By using the orthogonality of orthogonal vectors, the legitimate receiver can effectively eliminate the noise, which is generated by the cooperative jamming nodes to disturb the eavesdropper. This scheme enables the legitimate receiver to ensure a strong communication confidentiality even if there is no location or channel advantage comparing with eavesdroppers. Through extensive simulations, the security performance of the proposed scheme is investigated in terms of secrecy rate.
JOUINI, Oumeyma, SETHOM, Kaouthar.  2020.  Physical Layer Security Proposal for Wireless Body Area Networks. 2020 IEEE 5th Middle East and Africa Conference on Biomedical Engineering (MECBME). :1–5.
Over the last few decades, and thanks to the advancement of embedded systems and wireless technologies, the wireless sensors network (WSN) are increasingly used in many fields. Many researches are being done on the use of WSN in Wireless body Area Network (WBAN) systems to facilitate and improve the quality of care and remote patient monitoring.The broadcast nature of wireless communications makes it difficult to hide transmitted signals from unauthorized users. To this end, Physical layer security is emerging as a promising paradigm to protect wireless communications against eavesdropping attacks. The primary contribution of this paper is achieving a minimum secrecy outage probability by using the jamming technique which can be used by the legitimate communication partner to increase the noise level of the eavesdropper and ensure higher secure communication rate. We also evaluate the effect of additional jammers on the security of the WBAN system.
2021-09-16
Alshawi, Amany, Satam, Pratik, Almoualem, Firas, Hariri, Salim.  2020.  Effective Wireless Communication Architecture for Resisting Jamming Attacks. IEEE Access. 8:176691–176703.
Over time, the use of wireless technologies has significantly increased due to bandwidth improvements, cost-effectiveness, and ease of deployment. Owing to the ease of access to the communication medium, wireless communications and technologies are inherently vulnerable to attacks. These attacks include brute force attacks such as jamming attacks and those that target the communication protocol (Wi-Fi and Bluetooth protocols). Thus, there is a need to make wireless communication resilient and secure against attacks. Existing wireless protocols and applications have attempted to address the need to improve systems security as well as privacy. They have been highly effective in addressing privacy issues, but ineffective in addressing security threats like jamming and session hijacking attacks and other types of Denial of Service Attacks. In this article, we present an ``architecture for resilient wireless communications'' based on the concept of Moving Target Defense. To increase the difficulty of launching successful attacks and achieve resilient operation, we changed the runtime characteristics of wireless links, such as the modulation type, network address, packet size, and channel operating frequency. The architecture reduces the overhead resulting from changing channel configurations using two communication channels, in which one is used for communication, while the other acts as a standby channel. A prototype was built using Software Defined Radio to test the performance of the architecture. Experimental evaluations showed that the approach was resilient against jamming attacks. We also present a mathematical analysis to demonstrate the difficulty of performing a successful attack against our proposed architecture.
Conference Name: IEEE Access
2021-09-01
Ahmed, MMeraj, Vashist, Abhishek, Pudukotai Dinakarrao, Sai Manoj, Ganguly, Amlan.  2020.  Architecting a Secure Wireless Interconnect for Multichip Communication: An ML Approach. 2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1—6.
Compute-intensive platforms such as micro-servers and embedded systems have already undergone a shift from a single-chip to multichip architecture to achieve better yield and lower cost. However, performance of multichip systems is limited by the latency and power-hungry chip-to-chip wired I/Os. On the other hand, wireless interconnections are emerging as an energy-efficient and low latency interconnect solution for such multichip systems as it can mask long multi-hop off-chip wired I/O communication. Despite efficient communication, the unguided on and off-chip wireless communication introduce security vulnerabilities in the system. In this work, we propose a reconfigurable, secure millimeter-wave (mm-Wave) wireless interconnection architecture (AReS) for multichip systems capable of detecting and defending against emerging threats including Hardware Trojans (HTs) and Denial-of-Service (DoS) using a Machine Learning (ML)-based approach. The ML-based approach is used to classify internal and external attack to enable the required defense mechanism. To serve this purpose, we design a reconfigurable Medium Access Control (MAC) and a suitable communication protocol to enable sustainable communication even under jamming attack from both internal and external attackers. The proposed architecture also reuses the in-built test infrastructure to detect and withstand a persistent jamming attack in a wireless multichip system. Through simulation, we show that, the proposed wireless interconnection can sustain chip-to-chip communication even under persistent jamming attack with an average 1.44xand 1.56x latency degradation for internal and external attacks respectively for application-specific traffic.
2021-08-11
Chen, Juntao, Touati, Corinne, Zhu, Quanyan.  2020.  Optimal Secure Two-Layer IoT Network Design. IEEE Transactions on Control of Network Systems. 7:398–409.
With the remarkable growth of the Internet and communication technologies over the past few decades, Internet of Things (IoTs) is enabling the ubiquitous connectivity of heterogeneous physical devices with software, sensors, and actuators. IoT networks are naturally two layers with the cloud and cellular networks coexisting with the underlaid device-to-device communications. The connectivity of IoTs plays an important role in information dissemination for mission-critical and civilian applications. However, IoT communication networks are vulnerable to cyber attacks including the denial-of-service and jamming attacks, resulting in link removals in the IoT network. In this paper, we develop a heterogeneous IoT network design framework in which a network designer can add links to provide additional communication paths between two nodes or secure links against attacks by investing resources. By anticipating the strategic cyber attacks, we characterize the optimal design of the secure IoT network by first providing a lower bound on the number of links a secure network requires for a given budget of protected links, and then developing a method to construct networks that satisfy the heterogeneous network design specifications. Therefore, each layer of the designed heterogeneous IoT network is resistant to a predefined level of malicious attacks with minimum resources. Finally, we provide case studies on the Internet of Battlefield Things to corroborate and illustrate our obtained results.
2021-07-08
Chiariotti, Federico, Signori, Alberto, Campagnaro, Filippo, Zorzi, Michele.  2020.  Underwater Jamming Attacks as Incomplete Information Games. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1033—1038.
Autonomous Underwater Vehicles (AUVs) have several fundamental civilian and military applications, and Denial of Service (DoS) attacks against their communications are a serious threat. In this work, we analyze such an attack using game theory in an asymmetric scenario, in which the node under attack does not know the position of the jammer that blocks its signals. The jammer has a dual objective, namely, disrupting communications and forcing the legitimate transmitter to spend more energy protecting its own transmissions. Our model shows that, if both nodes act rationally, the transmitter is able to quickly reduce its disadvantage, estimating the location of the jammer and responding optimally to the attack.
2021-05-18
Soderi, Simone.  2020.  Enhancing Security in 6G Visible Light Communications. 2020 2nd 6G Wireless Summit (6G SUMMIT). :1–5.
This paper considers improving the confidentiality of the next generation of wireless communications by using the watermark-based blind physical layer security (WBPLSec) in Visible Light Communications (VLCs). Since the growth of wireless applications and service, the demand for a secure and fast data transfer connection requires new technology solutions capable to ensure the best countermeasure against security attacks. VLC is one of the most promising new wireless communication technology, due to the possibility of using environmental artificial lights as data transfer channel in free-space. On the other hand, VLCs are even inherently susceptible to eavesdropping attacks. This work proposes an innovative scheme in which red, green, blue (RGB) light-emitting-diodes (LEDs) and three color-tuned photo-diodes (PDs) are used to secure a VLC by using a jamming receiver in conjunction with the spread spectrum watermarking technique. To the best of the author's knowledge, this is the first work that deals with physical layer security on VLC by using RGB LEDs.
2021-05-13
Hachimi, Marouane, Kaddoum, Georges, Gagnon, Ghyslain, Illy, Poulmanogo.  2020.  Multi-stage Jamming Attacks Detection using Deep Learning Combined with Kernelized Support Vector Machine in 5G Cloud Radio Access Networks. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—5.

In 5G networks, the Cloud Radio Access Network (C-RAN) is considered a promising future architecture in terms of minimizing energy consumption and allocating resources efficiently by providing real-time cloud infrastructures, cooperative radio, and centralized data processing. Recently, given their vulnerability to malicious attacks, the security of C-RAN networks has attracted significant attention. Among various anomaly-based intrusion detection techniques, the most promising one is the machine learning-based intrusion detection as it learns without human assistance and adjusts actions accordingly. In this direction, many solutions have been proposed, but they show either low accuracy in terms of attack classification or they offer just a single layer of attack detection. This research focuses on deploying a multi-stage machine learning-based intrusion detection (ML-IDS) in 5G C-RAN that can detect and classify four types of jamming attacks: constant jamming, random jamming, deceptive jamming, and reactive jamming. This deployment enhances security by minimizing the false negatives in C-RAN architectures. The experimental evaluation of the proposed solution is carried out using WSN-DS (Wireless Sensor Networks DataSet), which is a dedicated wireless dataset for intrusion detection. The final classification accuracy of attacks is 94.51% with a 7.84% false negative rate.

2021-04-08
Bloch, M., Laneman, J. N..  2009.  Information-spectrum methods for information-theoretic security. 2009 Information Theory and Applications Workshop. :23–28.
We investigate the potential of an information-spectrum approach to information-theoretic security. We show how this approach provides conceptually simple yet powerful results that can be used to investigate complex communication scenarios. In particular, we illustrate the usefulness of information-spectrum methods by analyzing the effect of channel state information (CSI) on the secure rates achievable over wiretap channels. We establish a formula for secrecy capacity, which we then specialize to compute achievable rates for ergodic fading channels in the presence of imperfect CSI. Our results confirm the importance of having some knowledge about the eavesdropper's channel, but also show that imperfect CSI does not necessarily preclude security.
2021-03-15
Babu, S. A., Ameer, P. M..  2020.  Physical Adversarial Attacks Against Deep Learning Based Channel Decoding Systems. 2020 IEEE Region 10 Symposium (TENSYMP). :1511–1514.

Deep Learning (DL), in spite of its huge success in many new fields, is extremely vulnerable to adversarial attacks. We demonstrate how an attacker applies physical white-box and black-box adversarial attacks to Channel decoding systems based on DL. We show that these attacks can affect the systems and decrease performance. We uncover that these attacks are more effective than conventional jamming attacks. Additionally, we show that classical decoding schemes are more robust than the deep learning channel decoding systems in the presence of both adversarial and jamming attacks.

2021-02-10
Shang, F., Li, X., Zhai, D., Lu, Y., Zhang, D., Qian, Y..  2020.  On the Distributed Jamming System of Covert Timing Channels in 5G Networks. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :1107—1111.
To build the fifth generation (5G) mobile network, the sharing structure in the 5G network adopted in industries has gained great research interesting. However, in this structure data are shared among diversity networks, which introduces the threaten of network security, such as covert timing channels. To eliminate the covert timing channel, we propose to inject noise into the covert timing channel. By analyzing the modulation method of covert timing channels, we design the jamming strategy on the covert channel. According to the strategy, the interference algorithm of the covert timing channel is designed. Since the interference algorithm depends heavily on the memory, we construct a distributing jammer. Experiments results show that these covert time channel can be blocked under the distributing jammer.
2020-12-28
Borio, D., Gioia, C..  2020.  Mitigation of Frequency-Hopped Tick Jamming Signals. 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS). :624—630.

Global Navigation Satellite System (GNSS) jamming is an evolving technology where new modulations are progressively introduced in order to reduce the impact of interference mitigation techniques such as Adaptive Notch Filters (ANFs). The Standardisation of GNSS Threat reporting and Receiver testing through International Knowledge Exchange, Experimentation and Exploitation (STRIKE3) project recently described a new class of jamming signals, called tick signals, where a basic frequency tick is hopped over a large frequency range. In this way, discontinuities are introduced in the instantaneous frequency of the jamming signals. These discontinuities reduce the effectiveness of ANFs, which unable to track the jamming signal. This paper analyses the effectiveness of interference mitigation techniques with respect to frequency-hopped tick jamming signals. ANFs and Robust Interference Mitigation (RIM) techniques are analysed. From the analysis, it emerges that, despite the presence of frequency discontinuities, ANFs provide some margin against tick signals. However, frequency discontinuities prevent ANFs to remove all the jamming components and receiver operations are denied for moderate Jamming to Noise power ratio (J/N) values, RIM techniques are not affected by the presence of frequency discontinuities and significantly higher jamming power are sustained by the receiver when this type of techniques is adopted.

2020-12-14
Arjoune, Y., Salahdine, F., Islam, M. S., Ghribi, E., Kaabouch, N..  2020.  A Novel Jamming Attacks Detection Approach Based on Machine Learning for Wireless Communication. 2020 International Conference on Information Networking (ICOIN). :459–464.
Jamming attacks target a wireless network creating an unwanted denial of service. 5G is vulnerable to these attacks despite its resilience prompted by the use of millimeter wave bands. Over the last decade, several types of jamming detection techniques have been proposed, including fuzzy logic, game theory, channel surfing, and time series. Most of these techniques are inefficient in detecting smart jammers. Thus, there is a great need for efficient and fast jamming detection techniques with high accuracy. In this paper, we compare the efficiency of several machine learning models in detecting jamming signals. We investigated the types of signal features that identify jamming signals, and generated a large dataset using these parameters. Using this dataset, the machine learning algorithms were trained, evaluated, and tested. These algorithms are random forest, support vector machine, and neural network. The performance of these algorithms was evaluated and compared using the probability of detection, probability of false alarm, probability of miss detection, and accuracy. The simulation results show that jamming detection based random forest algorithm can detect jammers with a high accuracy, high detection probability and low probability of false alarm.
2020-12-11
Kousri, M. R., Deniau, V., Gransart, C., Villain, J..  2019.  Optimized Time-Frequency Processing Dedicated to the Detection of Jamming Attacks on Wi-Fi Communications. 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC). :1—4.

Attacks by Jamming on wireless communication network can provoke Denial of Services. According to the communication system which is affected, the consequences can be more or less critical. In this paper, we propose to develop an algorithm which could be implemented at the reception stage of a communication terminal in order to detect the presence of jamming signals. The work is performed on Wi-Fi communication signals and demonstrates the necessity to have a specific signal processing at the reception stage to be able to detect the presence of jamming signals.

2020-11-17
Hu, Y., Sanjab, A., Saad, W..  2019.  Dynamic Psychological Game Theory for Secure Internet of Battlefield Things (IoBT) Systems. IEEE Internet of Things Journal. 6:3712—3726.

In this paper, a novel anti-jamming mechanism is proposed to analyze and enhance the security of adversarial Internet of Battlefield Things (IoBT) systems. In particular, the problem is formulated as a dynamic psychological game between a soldier and an attacker. In this game, the soldier seeks to accomplish a time-critical mission by traversing a battlefield within a certain amount of time, while maintaining its connectivity with an IoBT network. The attacker, on the other hand, seeks to find the optimal opportunity to compromise the IoBT network and maximize the delay of the soldier's IoBT transmission link. The soldier and the attacker's psychological behavior are captured using tools from psychological game theory, with which the soldier's and attacker's intentions to harm one another are considered in their utilities. To solve this game, a novel learning algorithm based on Bayesian updating is proposed to find an ∈ -like psychological self-confirming equilibrium of the game.