Biblio
In cognitive radio networks (CRNs), secondary users (SUs) are vulnerable to malicious attacks because an SU node's opportunistic access cannot be protected from adversaries. How to design a channel hopping scheme to protect SU nodes from jamming attacks is thus an important issue in CRNs. Existing anti-jamming channel hopping schemes have some limitations: Some require SU nodes to exchange secrets in advance; some require an SU node to be either a receiver or a sender, and some are not flexible enough. Another issue for existing anti-jamming channel hopping schemes is that they do not consider different nodes may have different traffic loads. In this paper, we propose an anti-jamming channel hopping protocol, Load Awareness Anti-jamming channel hopping (LAA) scheme. Nodes running LAA are able to change their channel hopping sequences based on their sending and receiving traffic. Simulation results verify that LAA outperforms existing anti-jamming schemes.
With the rapid proliferation of mobile users, the spectrum scarcity has become one of the issues that have to be addressed. Cognitive Radio technology addresses this problem by allowing an opportunistic use of the spectrum bands. In cognitive radio networks, unlicensed users can use licensed channels without causing harmful interference to licensed users. However, cognitive radio networks can be subject to different security threats which can cause severe performance degradation. One of the main attacks on these networks is the primary user emulation in which a malicious node emulates the characteristics of the primary user signals. In this paper, we propose a detection technique of this attack based on the RSS-based localization with the maximum likelihood estimation. The simulation results show that the proposed technique outperforms the RSS-based localization method in detecting the primary user emulation attacker.
In this paper, the security performance of a dual-hop underlay cognitive radio (CR) system is investigated. In this system, we consider that the transmitted information by a source node S is forwarded by a multi-antenna relay R to its intended destination D. The relay performs the maximal-ratio combining (MRC) technique to process the multiple copies of the received signal. We also consider the presence of an eavesdropper who is attempting to intercept the transmitted information at both communication links, (i.e, S-R and R-D). In underlay cognitive radio networks (CRN), the source and the relay are required to adjust their transmission power to avoid causing interference to the primary user. Under this constraint, a closed-form expression of the secrecy outage probability is derived subject to Nakagami-m fading model. The derived expression is validated using Monte-Carlo simulation for various values of fading severity parameters as well as the number of MRC branches.
security evaluation of cryptosystem is a critical topic in cryptology. It is used to differentiate among cryptosystems' security. The aim of this paper is to produce a new model for security evaluation of cryptosystems, which is a combination of two theories (Game Theory and Information Theory). The result of evaluation method can help researchers to choose the appropriate cryptosystems in Wireless Communications Networks such as Cognitive Radio Networks.
Internet of Things (IoT) will be emerged over many of devices that are dynamically networked. Because of distributed and dynamic nature of IoT, designing a recommender system for them is a challenging problem. Recently, cognitive systems are used to design modern frameworks in different types of computer applications such as cognitive radio networks and cognitive peer-to-peer networks. A cognitive system can learn to improve its performance while operating under its unknown environment. In this paper, we propose a framework for cognitive recommender systems in IoT. To the best of our knowledge, there is no recommender system based on cognitive systems in the IoT. The proposed algorithm is compared with the existing recommender systems.
Cooperative MIMO communication is a promising technology which enables realistic solution for improving communication performance with MIMO technique in wireless networks that are composed of size and cost constrained devices. However, the security problems inherent to cooperative communication also arise. Cryptography can ensure the confidentiality in the communication and routing between authorized participants, but it usually cannot prevent the attacks from compromised nodes which may corrupt communications by sending garbled signals. In this paper, we propose a cross-layered approach to enhance the security in query-based cooperative MIMO sensor networks. The approach combines efficient cryptographic technique implemented in upper layer with a novel information theory based compromised nodes detection algorithm in physical layer. In the detection algorithm, a cluster of K cooperative nodes are used to identify up to K - 1 active compromised nodes. When the compromised nodes are detected, the key revocation is performed to isolate the compromised nodes and reconfigure the cooperative MIMO sensor network. During this process, beamforming is used to avoid the information leaking. The proposed security scheme can be easily modified and applied to cognitive radio networks. Simulation results show that the proposed algorithm for compromised nodes detection is effective and efficient, and the accuracy of received information is significantly improved.
Reliable detection of intrusion is the basis of safety in cognitive radio networks (CRNs). So far, few scholars applied intrusion detection systems (IDSs) to combat intrusion against CRNs. In order to improve the performance of intrusion detection in CRNs, a distributed intrusion detection scheme has been proposed. In this paper, a method base on Dempster-Shafer's (D-S) evidence theory to detect intrusion in CRNs is put forward, in which the detection data and credibility of different local IDS Agent is combined by D-S in the cooperative detection center, so that different local detection decisions are taken into consideration in the final decision. The effectiveness of the proposed scheme is verified by simulation, and the results reflect a noticeable performance improvement between the proposed scheme and the traditional method.
Primary user emulation (PUE) attack is one of the main threats affecting cognitive radio (CR) networks. The PUE can forge the same signal as the real primary user (PU) in order to use the licensed channel and cause deny of service (DoS). Therefore, it is important to locate the position of the PUE in order to stop and avoid any further attack. Several techniques have been proposed for localization, including the received signal strength indication RSSI, Triangulation, and Physical Network Layer Coding. However, the area surrounding the real PU is always affected by uncertainty. This uncertainty can be described as a lost (cost) function and conditional probability to be taken into consideration while proclaiming if a PU/PUE is the real PU or not. In this paper, we proposed a combination of a Bayesian model and trilateration technique. In the first part a trilateration technique is used to have a good approximation of the PUE position making use of the RSSI between the anchor nodes and the PU/PUE. In the second part, a Bayesian decision theory is used to claim the legitimacy of the PU based on the lost function and the conditional probability to help to determine the existence of the PUE attacker in the uncertainty area.
Spectrum sensing (signal detection) under low signal to noise ratio is a fundamental problem in cognitive radio networks. In this paper, we have analyzed maximum eigenvalue detection (MED) and energy detection (ED) techniques known as semi-blind spectrum sensing techniques. Simulations are performed by using independent and identically distributed (iid) signals to verify the results. Maximum eigenvalue detection algorithm exploits correlation in received signal samples and hence, performs same as energy detection algorithm under high signal to noise ratio. Energy detection performs well under low signal to noise ratio for iid signals and its performance reaches maximum eigenvalue detection under high signal to noise ratio. Both algorithms don't need any prior knowledge of primary user signal for detection and hence can be used in various applications.
Cognitive radio (CR) has emerged as a promising technology to increase the utilization of spectrum resource. A pivotal challenge in CR lies on secondary users' (SU) finding each other on the frequency band, i.e., the spectrum locating. In this demo, we implement two kinds of multi-channel rendezvous technology to solve the problem of spectrum locating: (i) the common control channel (CCC) based rendezvous scheme, which is simple and effective when a control channel is always available; and (ii) the channel-hopping (CH) based blind rendezvous, which could also obtain guaranteed rendezvous on all commonly available channels of pairwise SUs in a short time without a CCC. Furthermore, the cognitive nodes in the demonstration could adjust their communication channels autonomously according to the dynamic spectrum environment for continuous data transmission.