Biblio

Found 19604 results

2021-02-23
Savva, G., Manousakis, K., Ellinas, G..  2020.  Providing Confidentiality in Optical Networks: Metaheuristic Techniques for the Joint Network Coding-Routing and Spectrum Allocation Problem. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1—4.
In this work, novel metaheuristic algorithms are proposed to address the network coding (NC)-based routing and spectrum allocation (RSA) problem in elastic optical networks, aiming to increase the level of security against eavesdropping attacks for the network's confidential connections. A modified simulated annealing, a genetic algorithm, as well as a combination of the two techniques are examined in terms of confidentiality and spectrum utilization. Performance results demonstrate that using metaheuristic techniques can improve the performance of NC-based RSA algorithms and thus can be utilized in real-world network scenarios.
2021-04-08
Zheng, Y., Cao, Y., Chang, C..  2020.  A PUF-Based Data-Device Hash for Tampered Image Detection and Source Camera Identification. IEEE Transactions on Information Forensics and Security. 15:620—634.
With the increasing prevalent of digital devices and their abuse for digital content creation, forgeries of digital images and video footage are more rampant than ever. Digital forensics is challenged into seeking advanced technologies for forgery content detection and acquisition device identification. Unfortunately, existing solutions that address image tampering problems fail to identify the device that produces the images or footage while techniques that can identify the camera is incapable of locating the tampered content of its captured images. In this paper, a new perceptual data-device hash is proposed to locate maliciously tampered image regions and identify the source camera of the received image data as a non-repudiable attestation in digital forensics. The presented image may have been either tampered or gone through benign content preserving geometric transforms or image processing operations. The proposed image hash is generated by projecting the invariant image features into a physical unclonable function (PUF)-defined Bernoulli random space. The tamper-resistant random PUF response is unique for each camera and can only be generated upon triggered by a challenge, which is provided by the image acquisition timestamp. The proposed hash is evaluated on the modified CASIA database and CMOS image sensor-based PUF simulated using 180 nm TSMC technology. It achieves a high tamper detection rate of 95.42% with the regions of tampered content successfully located, a good authentication performance of above 98.5% against standard content-preserving manipulations, and 96.25% and 90.42%, respectively, for the more challenging geometric transformations of rotation (0 360°) and scaling (scale factor in each dimension: 0.5). It is demonstrated to be able to identify the source camera with 100% accuracy and is secure against attacks on PUF.
2021-09-16
Yoon, JinYi, Lee, HyungJune.  2020.  PUFGAN: Embracing a Self-Adversarial Agent for Building a Defensible Edge Security Architecture. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :904–913.
In the era of edge computing and Artificial Intelligence (AI), securing billions of edge devices within a network against intelligent attacks is crucial. We propose PUFGAN, an innovative machine learning attack-proof security architecture, by embedding a self-adversarial agent within a device fingerprint- based security primitive, public PUF (PPUF) known for its strong fingerprint-driven cryptography. The self-adversarial agent is implemented using Generative Adversarial Networks (GANs). The agent attempts to self-attack the system based on two GAN variants, vanilla GAN and conditional GAN. By turning the attacking quality through generating realistic secret keys used in the PPUF primitive into system vulnerability, the security architecture is able to monitor its internal vulnerability. If the vulnerability level reaches at a specific value, PUFGAN allows the system to restructure its underlying security primitive via feedback to the PPUF hardware, maintaining security entropy at as high a level as possible. We evaluated PUFGAN on three different machine environments: Google Colab, a desktop PC, and a Raspberry Pi 2, using a real-world PPUF dataset. Extensive experiments demonstrated that even a strong device fingerprint security primitive can become vulnerable, necessitating active restructuring of the current primitive, making the system resilient against extreme attacking environments.
2022-02-10
Pilehvar, Mohsen S., Mirafzal, Behrooz.  2020.  PV-Fed Smart Inverters for Mitigation of Voltage and Frequency Fluctuations in Islanded Microgrids. 2020 International Conference on Smart Grids and Energy Systems (SGES). :807–812.
The vulnerability of islanded microgrids to voltage and frequency variations is due to the presence of low-inertia distributed generation (DG) units. Besides, the considerable difference between the inertia of synchronous-based and inverter-based DGs results in a power mismatch between generation and consumption during abnormal conditions. As a result, both voltage and frequency of microgrid ac-bus start oscillating which might lead to blackouts. This paper deploys the traditional controller of photovoltaic (PV) units to improve the dynamics of islanded microgrids by reducing the voltage and frequency deviations. To this end, an adaptive piecewise droop (APD) curve is presented and implemented in PV units to attain a faster balance between supply and demand during transients, leading to an enhanced frequency response. Besides, the reactive-power control loop is equipped with a droop characteristic which enables the PV units to inject/absorb reactive power during transients and participate in voltage-profile enhancement of the system. Case study results are presented using PSCAD/EMTDC to confirm the validity of proposed method in improving the dynamic behavior of islanded microgrids.
2021-06-28
Mouris, Dimitris, Georgios Tsoutsos, Nektarios.  2020.  Pythia: Intellectual Property Verification in Zero-Knowledge. 2020 57th ACM/IEEE Design Automation Conference (DAC). :1–6.
The contemporary IC supply chain depends heavily on third-party intellectual property (3PIP) that is integrated to in-house designs. As the correctness of such 3PIPs should be verified before integration, one important challenge for 3PIP vendors is proving the functionality of their designs while protecting the privacy of circuit implementations. In this work, we present Pythia that employs zero-knowledge proofs to enable vendors convince integrators about the functionality of a circuit without disclosing its netlist. Pythia automatically encodes netlists into zero knowledge-friendly format, evaluates them on different inputs, and proves correctness of outputs. We evaluate Pythia using the ISCAS'85 benchmark suite.
2021-05-25
Alabadi, Montdher, Albayrak, Zafer.  2020.  Q-Learning for Securing Cyber-Physical Systems : A survey. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–13.
A cyber-physical system (CPS) is a term that implements mainly three parts, Physical elements, communication networks, and control systems. Currently, CPS includes the Internet of Things (IoT), Internet of Vehicles (IoV), and many other systems. These systems face many security challenges and different types of attacks, such as Jamming, DDoS.CPS attacks tend to be much smarter and more dynamic; thus, it needs defending strategies that can handle this level of intelligence and dynamicity. Last few years, many researchers use machine learning as a base solution to many CPS security issues. This paper provides a survey of the recent works that utilized the Q-Learning algorithm in terms of security enabling and privacy-preserving. Different adoption of Q-Learning for security and defending strategies are studied. The state-of-the-art of Q-learning and CPS systems are classified and analyzed according to their attacks, domain, supported techniques, and details of the Q-Learning algorithm. Finally, this work highlight The future research trends toward efficient utilization of Q-learning and deep Q-learning on CPS security.
2021-10-12
Zhong, Zhenyu, Hu, Zhisheng, Chen, Xiaowei.  2020.  Quantifying DNN Model Robustness to the Real-World Threats. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :150–157.
DNN models have suffered from adversarial example attacks, which lead to inconsistent prediction results. As opposed to the gradient-based attack, which assumes white-box access to the model by the attacker, we focus on more realistic input perturbations from the real-world and their actual impact on the model robustness without any presence of the attackers. In this work, we promote a standardized framework to quantify the robustness against real-world threats. It is composed of a set of safety properties associated with common violations, a group of metrics to measure the minimal perturbation that causes the offense, and various criteria that reflect different aspects of the model robustness. By revealing comparison results through this framework among 13 pre-trained ImageNet classifiers, three state-of-the-art object detectors, and three cloud-based content moderators, we deliver the status quo of the real-world model robustness. Beyond that, we provide robustness benchmarking datasets for the community.
2021-03-01
Zhang, Y., Groves, T., Cook, B., Wright, N. J., Coskun, A. K..  2020.  Quantifying the impact of network congestion on application performance and network metrics. 2020 IEEE International Conference on Cluster Computing (CLUSTER). :162–168.
In modern high-performance computing (HPC) systems, network congestion is an important factor that contributes to performance degradation. However, how network congestion impacts application performance is not fully understood. As Aries network, a recent HPC network architecture featuring a dragonfly topology, is equipped with network counters measuring packet transmission statistics on each router, these network metrics can potentially be utilized to understand network performance. In this work, by experiments on a large HPC system, we quantify the impact of network congestion on various applications' performance in terms of execution time, and we correlate application performance with network metrics. Our results demonstrate diverse impacts of network congestion: while applications with intensive MPI operations (such as HACC and MILC) suffer from more than 40% extension in their execution times under network congestion, applications with less intensive MPI operations (such as Graph500 and HPCG) are mostly not affected. We also demonstrate that a stall-to-flit ratio metric derived from Aries network counters is positively correlated with performance degradation and, thus, this metric can serve as an indicator of network congestion in HPC systems.
2021-04-08
Wang, P., Zhang, J., Wang, S., Wu, D..  2020.  Quantitative Assessment on the Limitations of Code Randomization for Legacy Binaries. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :1–16.
Software development and deployment are generally fast-pacing practices, yet to date there is still a significant amount of legacy software running in various critical industries with years or even decades of lifespans. As the source code of some legacy software became unavailable, it is difficult for maintainers to actively patch the vulnerabilities, leaving the outdated binaries appealing targets of advanced security attacks. One of the most powerful attacks today is code reuse, a technique that can circumvent most existing system-level security facilities. While there have been various countermeasures against code reuse, applying them to sourceless software appears to be exceptionally challenging. Fine-grained code randomization is considered to be an effective strategy to impede modern code-reuse attacks. To apply it to legacy software, a technique called binary rewriting is employed to directly reconstruct binaries without symbol or relocation information. However, we found that current rewriting-based randomization techniques, regardless of their designs and implementations, share a common security defect such that the randomized binaries may remain vulnerable in certain cases. Indeed, our finding does not invalidate fine-grained code randomization as a meaningful defense against code reuse attacks, for it significantly raises the bar for exploits to be successful. Nevertheless, it is critical for the maintainers of legacy software systems to be aware of this problem and obtain a quantitative assessment of the risks in adopting a potentially incomprehensive defense. In this paper, we conducted a systematic investigation into the effectiveness of randomization techniques designed for hardening outdated binaries. We studied various state-of-the-art, fine-grained randomization tools, confirming that all of them can leave a certain part of the retrofitted binary code still reusable. To quantify the risks, we proposed a set of concrete criteria to classify gadgets immune to rewriting-based randomization and investigated their availability and capability.
2021-11-08
Lin, Xinyi, Hou, Gonghua, Lin, Wei, Chen, Kangjie.  2020.  Quantum Key Distribution in Partially-Trusted QKD Ring Networks. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :33–36.
The long-distance transmission of quantum secret key is a challenge for quantum communication. As far as the current relay technology is concerned, the trusted relay technology is a more practical scheme. However, the trusted relay technology requires every relay node to be trusted, but in practical applications, the security of some relay nodes cannot be guaranteed. How to overcome the security problem of trusted relay technology and realize the security key distribution of remote quantum network has become a new problem. Therefore, in this paper, a method of quantum key distribution in ring network is proposed under the condition of the coexistence of trusted and untrusted repeaters, and proposes a partially-trusted based routing algorithm (PT-RA). This scheme effectively solves the security problem of key distribution in ring backbone network. And simulation results show that PT-RA can significantly improve key distribution success rate compared with the original trusted relay technology.
Chang, Sang-Yoon, Park, Younghee, Kengalahalli, Nikhil Vijayakumar, Zhou, Xiaobo.  2020.  Query-Crafting DoS Threats Against Internet DNS. 2020 IEEE Conference on Communications and Network Security (CNS). :1–9.
Domain name system (DNS) resolves the IP addresses of domain names and is critical for IP networking. Recent denial-of-service (DoS) attacks on Internet targeted the DNS system (e.g., Dyn), which has the cascading effect of denying the availability of the services and applications relying on the targeted DNS. In view of these attacks, we investigate the DoS on DNS system and introduce the query-crafting threats where the attacker controls the DNS query payload (the domain name) to maximize the threat impact per query (increasing the communications between the DNS servers and the threat time duration), which is orthogonal to other DoS approaches to increase the attack impact such as flooding and DNS amplification. We model the DNS system using a state diagram and comprehensively analyze the threat space, identifying the threat vectors which include not only the random/invalid domains but also those using the domain name structure to combine valid strings and random strings. Query-crafting DoS threats generate new domain-name payloads for each query and force increased complexity in the DNS query resolution. We test the query-crafting DoS threats by taking empirical measurements on the Internet and show that they amplify the DoS impact on the DNS system (recursive resolver) by involving more communications and taking greater time duration. To defend against such DoS or DDoS threats, we identify the relevant detection features specific to query-crafting threats and evaluate the defense using our prototype in CloudLab.
2021-01-22
Sahabandu, D., Allen, J., Moothedath, S., Bushnell, L., Lee, W., Poovendran, R..  2020.  Quickest Detection of Advanced Persistent Threats: A Semi-Markov Game Approach. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :9—19.
Advanced Persistent Threats (APTs) are stealthy, sophisticated, long-term, multi-stage attacks that threaten the security of sensitive information. Dynamic Information Flow Tracking (DIFT) has been proposed as a promising mechanism to detect and prevent various cyber attacks in computer systems. DIFT tracks suspicious information flows in the system and generates security analysis when anomalous behavior is detected. The number of information flows in a system is typically large and the amount of resources (such as memory, processing power and storage) required for analyzing different flows at different system locations varies. Hence, efficient use of resources is essential to maintain an acceptable level of system performance when using DIFT. On the other hand, the quickest detection of APTs is crucial as APTs are persistent and the damage caused to the system is more when the attacker spends more time in the system. We address the problem of detecting APTs and model the trade-off between resource efficiency and quickest detection of APTs. We propose a game model that captures the interaction of APT and a DIFT-based defender as a two-player, multi-stage, zero-sum, Stackelberg semi-Markov game. Our game considers the performance parameters such as false-negatives generated by DIFT and the time required for executing various operations in the system. We propose a two-time scale Q-learning algorithm that converges to a Stackelberg equilibrium under infinite horizon, limiting average payoff criteria. We validate our model and algorithm on a real-word attack dataset obtained using Refinable Attack INvestigation (RAIN) framework.
2021-02-15
Reyad, O., Karar, M., Hamed, K..  2020.  Random Bit Generator Mechanism Based on Elliptic Curves and Secure Hash Function. 2019 International Conference on Advances in the Emerging Computing Technologies (AECT). :1–6.
Pseudorandom bit generators (PRBG) can be designed to take the advantage of some hard number theoretic problems such as the discrete logarithm problem (DLP). Such type of generators will have good randomness and unpredictability properties as it is so difficult to find an easy solution to the regarding mathematical dilemma. Hash functions in turn play a remarkable role in many cryptographic tasks to achieve various security strengths. In this paper, a pseudorandom bit generator mechanism that is based mainly on the elliptic curve discrete logarithm problem (ECDLP) and hash derivation function is proposed. The cryptographic hash functions are used in consuming applications that require various security strengths. In a good hash function, finding whatever the input that can be mapped to any pre-specified output is considered computationally infeasible. The obtained pseudorandom bits are tested with NIST statistical tests and it also could fulfill the up-to-date standards. Moreover, a 256 × 256 grayscale images are encrypted with the obtained pseudorandom bits following by necessary analysis of the cipher images for security prove.
2021-01-18
Ergün, S., Tanrıseven, S..  2020.  Random Number Generator Based on Skew-tent Map and Chaotic Sampling. 2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). :224–227.
In this paper a novel random number generator is introduced and it is based on the Skew-tent discrete-time chaotic map. The RNG presented in this paper is made using the discrete-time chaotic map and chaotic sampling of regular waveform method together to increase the throughput and statistical quality of the output sequence. An explanation of the arithmetic model for the proposed design is given in this paper with an algebra confirmation for the generated bit stream that shows how it passes the primary four tests of the FIPS-140-2 test suit successfully. Finally the bit stream resulting from the hardware implementation of the circuit in a similar method has been confirmed to pass all NIST-800-22 test with no post processing. A presentation of the experimentally obtained results is given therefor proving the the circuit’s usefulness. The proposed RNG can be built with the integrated circuit.
2020-03-23
Choi, Jungyong, Shin, WoonSeob, Kim, Jonghyun, Kim, Ki-Hyung.  2020.  Random Seed Generation For IoT Key Generation and Key Management System Using Blockchain. 2020 International Conference on Information Networking (ICOIN). :663–665.
Recently, the Internet of Things (IoT) is growing rapidly. IoT sensors are attached to various devices, and information is detected, collected and utilized through various wired and wireless communication environments. As the IoT is used in various places, IoT devices face a variety of malicious attacks such as MITM and reverse engineering. To prevent these, encryption is required for device-to-device communication, and keys required for encryption must be properly managed. We propose a scheme to generate seed needed for key generation and a scheme to manage the public key using blockchain.
2021-01-18
Anupadma, S., Dharshini, B. S., Roshini, S., K, J. Singh.  2020.  Random selective block encryption technique for image cryptography using chaotic cryptography. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1–5.
Dynamic random growth technique and a hybrid chaotic map which is proposed in this paper are used to perform block-based image encryption. The plaintext attack can easily crack the cat map, as it is periodic, and therefore cat map securely used in which it can eliminate the cyclical occurrence and withstand the plaintext attack's effect. The diffusion process calculates the intermediate parameters according to the image block. For the generation of the random data stream in the chaotic map, we use an intermediate parameter as an initial parameter. In this way, the generated data stream depends on the plain text image that can withstand the attack on plain text. The experimental results of this process prove that the proposed dynamic random growth technique and a hybrid chaotic map for image encryption is a secured one in which it can be used in secured image transmission systems.
2021-02-22
Alzakari, N., Dris, A. B., Alahmadi, S..  2020.  Randomized Least Frequently Used Cache Replacement Strategy for Named Data Networking. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
To accommodate the rapidly changing Internet requirements, Information-Centric Networking (ICN) was recently introduced as a promising architecture for the future Internet. One of the ICN primary features is `in-network caching'; due to its ability to minimize network traffic and respond faster to users' requests. Therefore, various caching algorithms have been presented that aim to enhance the network performance using different measures, such as cache hit ratio and cache hit distance. Choosing a caching strategy is critical, and an adequate replacement strategy is also required to decide which content should be dropped. Thus, in this paper, we propose a content replacement scheme for ICN, called Randomized LFU that is implemented with respect to content popularity taking the time complexity into account. We use Abilene and Tree network topologies in our simulation models. The proposed replacement achieves encouraging results in terms of the cache hit ratio, inner hit, and hit distance and it outperforms FIFO, LRU, and Random replacement strategies.
2021-05-20
Sunehra, Dhiraj, Sreshta, V. Sai, Shashank, V., Kumar Goud, B. Uday.  2020.  Raspberry Pi Based Smart Wearable Device for Women Safety using GPS and GSM Technology. 2020 IEEE International Conference for Innovation in Technology (INOCON). :1—5.
Security has become a major concern for women, children and even elders in every walk of their life. Women are getting assaulted and molested, children are getting kidnapped, elder citizens are also facing many problems like robbery, etc. In this paper, a smart security solution called smart wearable device system is implemented using the Raspberry Pi3 for enhancing the safety and security of women/children. It works as an alert as well as a security system. It provides a buzzer alert alert to the people who are nearby to the user (wearing the smart device). The system uses Global Positioning System (GPS) to locate the user, sends the location of the user through SMS to the emergency contact and police using the Global System for Mobile Communications (GSM) / General Radio Packet Service (GPRS) technology. The device also captures the image of the assault and surroundings of the user or victim using USB Web Camera interfaced to the device and sends it as an E-mail alert to the emergency contact soon after the user presses the panic button present on Smart wearable device system.
2021-08-11
Chang, Rong N., Bhaskaran, Kumar, Dey, Prasenjit, Hsu, Hsianghan, Takeda, Seiji, Hama, Toshiyuki.  2020.  Realizing A Composable Enterprise Microservices Fabric with AI-Accelerated Material Discovery API Services. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :313–320.
The complexity of building, deploying, and managing cross-organizational enterprise computing services with self-service, security, and quality assurances has been increasing exponentially in the era of hybrid multiclouds. AI-accelerated material discovery capabilities, for example, are desirable for enterprise application users to consume through business API services with assurance of satisfactory nonfunctional properties, e.g., enterprise-compliant self-service management of sharable sensitive data and machine learning capabilities at Internet scale. This paper presents a composable microservices based approach to creating and continuously improving enterprise computing services. Moreover, it elaborates on several key architecture design decisions for Navarch, a composable enterprise microservices fabric that facilitates consuming, managing, and composing enterprise API services. Under service management model of individual administration, every Navarch microservice is a managed composable API service that can be provided by an internal organization, an enterprise partner, or a public service provider. This paper also illustrates a Navarch-enabled systematic and efficient approach to transforming an AI-accelerated material discovery tool into secure, scalable, and composable enterprise microservices. Performance of the microservices can be continuously improved by exploiting advanced heterogeneous microservice hosting infrastructures. Factual comparative performance analyses are provided before the paper concludes with future work.
2021-10-04
Thakur, Subhasis, Breslin, John G..  2020.  Real-time Peer to Peer Energy Trade with Blockchain Offline Channels. 2020 IEEE International Conference on Power Systems Technology (POWERCON). :1–6.
Blockchain become a suitable platform for peer to peer energy trade as it facilitates secure interactions among parties with trust or a mutual trusted 3rd party. However, the scalability issue of blockchains is a problem for real-time energy trade to be completed within a small time duration. In this paper, we use offline channels for blockchains to circumvent scalability problems of blockchains for peer to peer energy trade with small trade duration. We develop algorithms to find stable coalitions for energy trade using blockchain offline channels. We prove that our solution is secure against adversarial prosumer behaviors, it supports real-time trade as the algorithm is guaranteed to find and record stable coalitions before a fixed time, and the coalition structure generated by the algorithm is efficient.
2022-02-10
Wang, Qianqian, Wang, Ben, Yu, Jiangfan, Schweizer, Kathrin, Nelson, Bradley J., Zhang, Li.  2020.  Reconfigurable Magnetic Microswarm for Thrombolysis under Ultrasound Imaging. 2020 IEEE International Conference on Robotics and Automation (ICRA). :10285–10291.
We propose thrombolysis using a magnetic nanoparticle microswarm with tissue plasminogen activator (tPA) under ultrasound imaging. The microswarm is generated in blood using an oscillating magnetic field and can be navigated with locomotion along both the long and short axis. By modulating the input field, the aspect ratio of the microswarm can be reversibly tuned, showing the ability to adapt to different confined environments. Simulation results indicate that both in-plane and out-of-plane fluid convection are induced around the microswarm, which can be further enhanced by tuning the aspect ratio of the microswarm. Under ultrasound imaging, the microswarm is navigated in a microchannel towards a blood clot and deformed to obtain optimal lysis. Experimental results show that the lysis rate reaches -0.1725 ± 0.0612 mm3/min in the 37°C blood environment under the influence of the microswarm-induced fluid convection and tPA. The lysis rate is enhanced 2.5-fold compared to that without the microswarm (-0.0681 ± 0.0263 mm3/min). Our method provides a new strategy to increase the efficiency of thrombolysis by applying microswarm-induced fluid convection, indicating that swarming micro/nanorobots have the potential to act as effective tools towards targeted therapy.
ISSN: 2577-087X
2021-02-23
Alshamrani, A..  2020.  Reconnaissance Attack in SDN based Environments. 2020 27th International Conference on Telecommunications (ICT). :1—5.
Software Defined Networking (SDN) is a promising network architecture that aims at providing high flexibility through the separation between network logic (control plane) and forwarding functions (data plane). This separation provides logical centralization of controllers, global network overview, ease of programmability, and a range of new SDN-compliant services. In recent years, the adoption of SDN in enterprise networks has been constantly increasing. In the meantime, new challenges arise in different levels such as scalability, management, and security. In this paper, we elaborate on complex security issues in the current SDN architecture. Especially, reconnaissance attack where attackers generate traffic for the goal of exploring existing services, assets, and overall network topology. To eliminate reconnaissance attack in SDN environment, we propose SDN-based solution by utilizing distributed firewall application, security policy, and OpenFlow counters. Distributed firewall application is capable of tracking the flow based on pre-defined states that would monitor the connection to sensitive nodes toward malicious activity. We utilize Mininet to simulate the testing environment. We are able to detect and mitigate this type of attack at early stage and in average around 7 second.
2021-02-15
Hu, X., Deng, C., Yuan, B..  2020.  Reduced-Complexity Singular Value Decomposition For Tucker Decomposition: Algorithm And Hardware. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :1793–1797.
Tensors, as the multidimensional generalization of matrices, are naturally suited for representing and processing high-dimensional data. To date, tensors have been widely adopted in various data-intensive applications, such as machine learning and big data analysis. However, due to the inherent large-size characteristics of tensors, tensor algorithms, as the approaches that synthesize, transform or decompose tensors, are very computation and storage expensive, thereby hindering the potential further adoptions of tensors in many application scenarios, especially on the resource-constrained hardware platforms. In this paper, we propose a reduced-complexity SVD (Singular Vector Decomposition) scheme, which serves as the key operation in Tucker decomposition. By using iterative self-multiplication, the proposed scheme can significantly reduce the storage and computational costs of SVD, thereby reducing the complexity of the overall process. Then, corresponding hardware architecture is developed with 28nm CMOS technology. Our synthesized design can achieve 102GOPS with 1.09 mm2 area and 37.6 mW power consumption, and thereby providing a promising solution for accelerating Tucker decomposition.
2021-03-22
Wang, Z., Chen, L..  2020.  Re-encrypted Data Access Control Scheme Based on Blockchain. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :1757–1764.
Nowadays, massive amounts of data are stored in the cloud, how to access control the cloud data has become a prerequisite for protecting the security of cloud data. In order to address the problems of centralized control and privacy protection in current access control, we propose an access control scheme based on the blockchain and re-encryption technology, namely PERBAC-BC scheme. The access control policy is managed by the decentralized and immutability characteristics of blockchain, while the re-encryption is protected by the trusted computing characteristic of blockchain and the privacy is protected by the identity re-encryption technology. The overall structure diagram and detailed execution flow of the scheme are given in this paper. Experimental results show that, compared with the traditional hybrid encryption scheme, the time and space consumption is less when the system is expanded. Then, the time and space performance of each part of the scheme is simulated, and the security of blockchain is proved. The results also show that the time and space performance of the scheme are better and the security is stronger, which has certain stability and expandability.
2021-08-31
Adamov, Alexander, Carlsson, Anders.  2020.  Reinforcement Learning for Anti-Ransomware Testing. 2020 IEEE East-West Design Test Symposium (EWDTS). :1–5.
In this paper, we are going to verify the possibility to create a ransomware simulation that will use an arbitrary combination of known tactics and techniques to bypass an anti-malware defense. To verify this hypothesis, we conducted an experiment in which an agent was trained with the help of reinforcement learning to run the ransomware simulator in a way that can bypass anti-ransomware solution and encrypt the target files. The novelty of the proposed method lies in applying reinforcement learning to anti-ransomware testing that may help to identify weaknesses in the anti-ransomware defense and fix them before a real attack happens.