Biblio
To improve customer experience, datacenter operators offer support for simplifying application and resource management. For example, running workloads of workflows on behalf of customers is desirable, but requires increasingly more sophisticated autoscaling policies, that is, policies that dynamically provision resources for the customer. Although selecting and tuning autoscaling policies is a challenging task for datacenter operators, so far relatively few studies investigate the performance of autoscaling for workloads of workflows. Complementing previous knowledge, in this work we propose the first comprehensive performance study in the field. Using trace-based simulation, we compare state-of-the-art autoscaling policies across multiple application domains, workload arrival patterns (e.g., burstiness), and system utilization levels. We further investigate the interplay between autoscaling and regular allocation policies, and the complexity cost of autoscaling. Our quantitative study focuses not only on traditional performance metrics and on state-of-the-art elasticity metrics, but also on time-and memory-related autoscaling-complexity metrics. Our main results give strong and quantitative evidence about previously unreported operational behavior, for example, that autoscaling policies perform differently across application domains and allocation and provisioning policies should be co-designed.
Crowd sensing is one of the core features of internet of vehicles, the use of internet of vehicles for crowd sensing is conducive to the rational allocation of sensing tasks. This paper mainly studies the problem of task allocation for crowd sensing in internet of vehicles, proposes a trajectory-based task allocation scheme for crowd sensing in internet of vehicles. With limited budget constraints, participants' trajectory is taken as an indicator of the spatiotemporal availability. Based on the solution idea of the minimal-cover problem, select the minimum number of participating vehicles to achieve the coverage of the target area.
Use-After-Free (UAF) vulnerabilities are caused by the program operating on a dangling pointer and can be exploited to compromise critical software systems. While there have been many tools to mitigate UAF vulnerabilities, UAF remains one of the most common attack vectors. UAF is particularly di cult to detect in concurrent programs, in which a UAF may only occur with rare thread schedules. In this paper, we present a novel technique, UFO, that can precisely predict UAFs based on a single observed execution trace with a provably higher detection capability than existing techniques with no false positives. The key technical advancement of UFO is an extended maximal thread causality model that captures the largest possible set of feasible traces that can be inferred from a given multithreaded execution trace. By formulating UAF detection as a constraint solving problem atop this model, we can explore a much larger thread scheduling space than classical happens-before based techniques. We have evaluated UFO on several real-world large complex C/C++ programs including Chromium and FireFox. UFO scales to real-world systems with hundreds of millions of events in their execution and has detected a large number of real concurrency UAFs.
Deception is a tactic that could be used in cybersecurity to attack adversaries. Deception technology goes beyond the honeypot concept in that it can be used to actively lure and bait attackers to an environment in which deception is applied. Organizations can use deception technology to reduce false positives, trigger early threat hunting operations, and more.
Smart grid utilizes cloud service to realize reliable, efficient, secured, and cost-effective power management, but there are a number of security risks in the cloud service of smart grid. The security risks are particularly problematic to operators of power information infrastructure who want to leverage the benefits of cloud. In this paper, security risk of cloud service in the smart grid are categorized and analyzed characteristics, and multi-layered index system of general technical risks is established, which applies to different patterns of cloud service. Cloud service risk of smart grid can evaluate according indexes.
Cyber-physical systems (CPS) and their Internet of Things (IoT) components are repeatedly subject to various attacks targeting weaknesses in their firmware. For that reason emerges an imminent demand for secure update mechanisms that not only include specific systems but cover all parts of the critical infrastructure. In this paper we introduce a theoretical concept for a secure CPS device update and verification mechanism and provide information on handling hardware-based security incorporating trusted platform modules (TPM) on those CPS devices. We will describe secure communication channels by state of the art technology and also integrity measurement mechanisms to ensure the system is in a known state. In addition, a multi-level fail-over concept is presented, ensuring continuous patching to minimize the necessity of restarting those systems.
Reconnaissance phase is where attackers identify their targets and how to collect information from professional social networks which can be used to select and exploit targeted employees to penetrate in an organization. Here, a framework is proposed for the early detection of attackers in the reconnaissance phase, highlighting the common characteristic behavior among attackers in professional social networks. And to create artificial honeypot profiles within the organizational social network which can be used to detect a potential incoming threat. By analyzing the dataset of social Network profiles in combination of machine learning techniques, A DspamRPfast model is proposed for the creation of a classifier system to predict the probabilities of the profiles being fake or malicious and to filter them out using XGBoost and for the faster classification and greater accuracy of 84.8%.
The safety of industrial control systems (ICS) depends not only on comprehensive solutions for protecting information, but also on the timing and closure of vulnerabilities in the software of the ICS. The investigation of security incidents in the ICS is often greatly complicated by the fact that malicious software functions only within the computer's volatile memory. Obtaining the contents of the volatile memory of an attacked computer is difficult to perform with a guaranteed reliability, since the data collection procedure must be based on a reliable code (the operating system or applications running in its environment). The paper proposes a new instrumental method for obtaining the contents of volatile memory, general rules for implementing the means of collecting information stored in memory. Unlike software methods, the proposed method has two advantages: firstly, there is no problem in terms of reading the parts of memory, blocked by the operating system, and secondly, the resulting contents are not compromised by such malicious software. The proposed method is relevant for investigating security incidents of ICS and can be used in continuous monitoring systems for the security of ICS.
Today, network security is a world hot topic in computer security and defense. Intrusions and attacks in network infrastructures lead mostly in huge financial losses, massive sensitive data leaks, thus decreasing efficiency, competitiveness and the quality of productivity of an organization. Network Intrusion Detection System (NIDS) is valuable tool for the defense-in-depth of computer networks. It is widely deployed in network architectures in order to monitor, to detect and eventually respond to any anomalous behavior and misuse which can threat confidentiality, integrity and availability of network resources and services. Thus, the presence of NIDS in an organization plays a vital part in attack mitigation, and it has become an integral part of a secure organization. In this paper, we propose to optimize a very popular soft computing tool widely used for intrusion detection namely Back Propagation Neural Network (BPNN) using a novel hybrid Framework (GASAA) based on improved Genetic Algorithm (GA) and Simulated Annealing Algorithm (SAA). GA is improved through an optimization strategy, namely Fitness Value Hashing (FVH), which reduce execution time, convergence time and save processing power. Experimental results on KDD CUP' 99 dataset show that our optimized ANIDS (Anomaly NIDS) based BPNN, called “ANIDS BPNN-GASAA” outperforms several state-of-art approaches in terms of detection rate and false positive rate. In addition, improvement of GA through FVH has saved processing power and execution time. Thereby, our proposed IDS is very much suitable for network anomaly detection.
Unlike traditional processors, embedded Internet of Things (IoT) devices lack resources to incorporate protection against modern sophisticated attacks resulting in critical consequences. Remote attestation (RA) is a security service to establish trust in the integrity of a remote device. While conventional RA is static and limited to detecting malicious modification to software binaries at load-time, recent research has made progress towards runtime attestation, such as attesting the control flow of an executing program. However, existing control-flow attestation schemes are inefficient and vulnerable to sophisticated data-oriented programming (DOP) attacks subvert these schemes and keep the control flow of the code intact. In this paper, we present LiteHAX, an efficient hardware-assisted remote attestation scheme for RISC-based embedded devices that enables detecting both control-flow attacks as well as DOP attacks. LiteHAX continuously tracks both the control-flow and data-flow events of a program executing on a remote device and reports them to a trusted verifying party. We implemented and evaluated LiteHAX on a RISC-V System-on-Chip (SoC) and show that it has minimal performance and area overhead.