Biblio

Found 19604 results

2019-01-16
Carlini, N., Wagner, D..  2018.  Audio Adversarial Examples: Targeted Attacks on Speech-to-Text. 2018 IEEE Security and Privacy Workshops (SPW). :1–7.
We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform, we can produce another that is over 99.9% similar, but transcribes as any phrase we choose (recognizing up to 50 characters per second of audio). We apply our white-box iterative optimization-based attack to Mozilla's implementation DeepSpeech end-to-end, and show it has a 100% success rate. The feasibility of this attack introduce a new domain to study adversarial examples.
2019-08-05
Pan, G., He, J., Wu, Q., Fang, R., Cao, J., Liao, D..  2018.  Automatic stabilization of Zigbee network. 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). :224–227.

We present an intelligent system that focus on how to ensure the stability of ZigBee network automatically. First, we discussed on the character of ZigBee compared with WIFI. Pointed out advantage of ZigBee resides in security, stability, low power consumption and better expandability. Second, figuring out the shortcomings of ZigBee on application is that physical limitation of the frequency band and weak ability on diffraction, especially coming across a wall or a door in the actual environment of home. The third, to put forward a method which can be used to ensure the strength of ZigBee signal. The method is to detect the strength of ZigBee relay in advance. And then, to compare it with the threshold value which had been defined in previous. The threshold value of strength of ZigBee is the minimal and tolerable value which can ensure stable transmission of ZigBee. If the detected value is out of the range of threshold, system will prompt up warning message which can be used to hint user to add ZigBee reply between the original ZigBee node and ZigBee gateway.

2019-05-08
Moore, A. P., Cassidy, T. M., Theis, M. C., Bauer, D., Rousseau, D. M., Moore, S. B..  2018.  Balancing Organizational Incentives to Counter Insider Threat. 2018 IEEE Security and Privacy Workshops (SPW). :237–246.

Traditional security practices focus on negative incentives that attempt to force compliance through constraints, monitoring, and punishment. This paper describes a missing dimension of most organizations' insider threat defense-one that explicitly considers positive incentives for attracting individuals to act in the interests of the organization. Positive incentives focus on properties of the organizational context of workforce management practices - including those relating to organizational supportiveness, coworker connectedness, and job engagement. Without due attention to the organizational context in which insider threats occur, insider misbehaviors may simply reoccur as a natural response to counterproductive or dysfunctional management practices. A balanced combination of positive and negative incentives can improve employees' relationships with the organization and provide a means for employees to better cope with personal and professional stressors. An insider threat program that balances organizational incentives can become an advocate for the workforce and a means for improving employee work life - a welcome message to employees who feel threatened by programs focused on discovering insider wrongdoing.

2019-04-01
Wang, M., Yang, Y., Zhu, M., Liu, J..  2018.  CAPTCHA Identification Based on Convolution Neural Network. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC). :364–368.
The CAPTCHA is an effective method commonly used in live interactive proofs on the Internet. The widely used CAPTCHAs are text-based schemes. In this paper, we document how we have broken such text-based scheme used by a website CAPTCHA. We use the sliding window to segment 1001 pieces of CAPTCHA to get 5900 images with single-character useful information, a total of 25 categories. In order to make the convolution neural network learn more image features, we augmented the data set to get 129924 pictures. The data set is trained and tested in AlexNet and GoogLeNet to get the accuracy of 87.45% and 98.92%, respectively. The experiment shows that the optimized network parameters can make the accuracy rate up to 92.7% in AlexNet and 98.96% in GoogLeNet.
Hu, Y., Chen, L., Cheng, J..  2018.  A CAPTCHA recognition technology based on deep learning. 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). :617–620.
Completely Automated Public Turing Test to Tell Computers and Humans Apart (CAPTCHA) is an important human-machine distinction technology for website to prevent the automatic malicious program attack. CAPTCHA recognition studies can find security breaches in CAPTCHA, improve CAPTCHA technology, it can also promote the technologies of license plate recognition and handwriting recognition. This paper proposed a method based on Convolutional Neural Network (CNN) model to identify CAPTCHA and avoid the traditional image processing technology such as location and segmentation. The adaptive learning rate is introduced to accelerate the convergence rate of the model, and the problem of over-fitting and local optimal solution has been solved. The multi task joint training model is used to improve the accuracy and generalization ability of model recognition. The experimental results show that the model has a good recognition effect on CAPTCHA with background noise and character adhesion distortion.
2019-05-01
Li, P., Liu, Q., Zhao, W., Wang, D., Wang, S..  2018.  Chronic Poisoning against Machine Learning Based IDSs Using Edge Pattern Detection. 2018 IEEE International Conference on Communications (ICC). :1-7.

In big data era, machine learning is one of fundamental techniques in intrusion detection systems (IDSs). Poisoning attack, which is one of the most recognized security threats towards machine learning- based IDSs, injects some adversarial samples into the training phase, inducing data drifting of training data and a significant performance decrease of target IDSs over testing data. In this paper, we adopt the Edge Pattern Detection (EPD) algorithm to design a novel poisoning method that attack against several machine learning algorithms used in IDSs. Specifically, we propose a boundary pattern detection algorithm to efficiently generate the points that are near to abnormal data but considered to be normal ones by current classifiers. Then, we introduce a Batch-EPD Boundary Pattern (BEBP) detection algorithm to overcome the limitation of the number of edge pattern points generated by EPD and to obtain more useful adversarial samples. Based on BEBP, we further present a moderate but effective poisoning method called chronic poisoning attack. Extensive experiments on synthetic and three real network data sets demonstrate the performance of the proposed poisoning method against several well-known machine learning algorithms and a practical intrusion detection method named FMIFS-LSSVM-IDS.

2019-03-28
Llopis, S., Hingant, J., Pérez, I., Esteve, M., Carvajal, F., Mees, W., Debatty, T..  2018.  A Comparative Analysis of Visualisation Techniques to Achieve Cyber Situational Awareness in the Military. 2018 International Conference on Military Communications and Information Systems (ICMCIS). :1-7.
Starting from a common fictional scenario, simulated data sources and a set of measurements will feed two different visualization techniques with the aim to make a comparative analysis. Both visualization techniques described in this paper use the operational picture concept, deemed as the most appropriate tool for military commanders and their staff to achieve cyber situational awareness and to understand the cyber defence implications in operations. Cyber Common Operational Picture (CyCOP) is a tool developed by Universitat Politècnica de València in collaboration with the Spanish Ministry of Defence whose objective is to generate the Cyber Hybrid Situational Awareness (CyHSA). Royal Military Academy in Belgium developed a 3D Operational Picture able to display mission critical elements intuitively using a priori defined domain-knowledge. A comparative analysis will assist researchers in their way to progress solutions and implementation aspects.
2019-10-14
Koo, H., Chen, Y., Lu, L., Kemerlis, V. P., Polychronakis, M..  2018.  Compiler-Assisted Code Randomization. 2018 IEEE Symposium on Security and Privacy (SP). :461–477.

Despite decades of research on software diversification, only address space layout randomization has seen widespread adoption. Code randomization, an effective defense against return-oriented programming exploits, has remained an academic exercise mainly due to i) the lack of a transparent and streamlined deployment model that does not disrupt existing software distribution norms, and ii) the inherent incompatibility of program variants with error reporting, whitelisting, patching, and other operations that rely on code uniformity. In this work we present compiler-assisted code randomization (CCR), a hybrid approach that relies on compiler-rewriter cooperation to enable fast and robust fine-grained code randomization on end-user systems, while maintaining compatibility with existing software distribution models. The main concept behind CCR is to augment binaries with a minimal set of transformation-assisting metadata, which i) facilitate rapid fine-grained code transformation at installation or load time, and ii) form the basis for reversing any applied code transformation when needed, to maintain compatibility with existing mechanisms that rely on referencing the original code. We have implemented a prototype of this approach by extending the LLVM compiler toolchain, and developing a simple binary rewriter that leverages the embedded metadata to generate randomized variants using basic block reordering. The results of our experimental evaluation demonstrate the feasibility and practicality of CCR, as on average it incurs a modest file size increase of 11.46% and a negligible runtime overhead of 0.28%, while it is compatible with link-time optimization and control flow integrity.

2019-01-31
Arfaoui, A., Kribeche, A., Boudia, O. R. M., Letaifa, A. Ben, Senouci, S. M., Hamdi, M..  2018.  Context-Aware Authorization and Anonymous Authentication in Wireless Body Area Networks. 2018 IEEE International Conference on Communications (ICC). :1–7.

With the pervasiveness of the Internet of Things (IoT) and the rapid progress of wireless communications, Wireless Body Area Networks (WBANs) have attracted significant interest from the research community in recent years. As a promising networking paradigm, it is adopted to improve the healthcare services and create a highly reliable ubiquitous healthcare system. However, the flourish of WBANs still faces many challenges related to security and privacy preserving. In such pervasive environment where the context conditions dynamically and frequently change, context-aware solutions are needed to satisfy the users' changing needs. Therefore, it is essential to design an adaptive access control scheme that can simultaneously authorize and authenticate users while considering the dynamic context changes. In this paper, we propose a context-aware access control and anonymous authentication approach based on a secure and efficient Hybrid Certificateless Signcryption (H-CLSC) scheme. The proposed scheme combines the merits of Ciphertext-Policy Attribute-Based Signcryption (CP-ABSC) and Identity-Based Broadcast Signcryption (IBBSC) in order to satisfy the security requirements and provide an adaptive contextual privacy. From a security perspective, it achieves confidentiality, integrity, anonymity, context-aware privacy, public verifiability, and ciphertext authenticity. Moreover, the key escrow and public key certificate problems are solved through this mechanism. Performance analysis demonstrates the efficiency and the effectiveness of the proposed scheme compared to benchmark schemes in terms of functional security, storage, communication and computational cost.

2019-09-26
Miletić, M., Vuku\v sić, M., Mau\v sa, G., Grbac, T. G..  2018.  Cross-Release Code Churn Impact on Effort-Aware Software Defect Prediction. 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :1460-1466.

Code churn has been successfully used to identify defect inducing changes in software development. Our recent analysis of the cross-release code churn showed that several design metrics exhibit moderate correlation with the number of defects in complex systems. The goal of this paper is to explore whether cross-release code churn can be used to identify critical design change and contribute to prediction of defects for software in evolution. In our case study, we used two types of data from consecutive releases of open-source projects, with and without cross-release code churn, to build standard prediction models. The prediction models were trained on earlier releases and tested on the following ones, evaluating the performance in terms of AUC, GM and effort aware measure Pop. The comparison of their performance was used to answer our research question. The obtained results showed that the prediction model performs better when cross-release code churn is included. Practical implication of this research is to use cross-release code churn to aid in safe planning of next release in software development.

2022-04-21
Strielkina, Anastasiia, Illiashenko, Oleg, Zhydenko, Marina, Uzun, Dmytro.  2018.  Cybersecurity of healthcare IoT-based systems: Regulation and case-oriented assessment. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). :67–73.
The paper deals with exponentially growing technology - Internet of Things (IoT) in the field of healthcare. It is spoken about the networked healthcare and medical architecture. The attention is given to the analysis of the international regulations on medical and healthcare cybersecurity. For building a trustworthy healthcare IoT solution, a developed normative hierarchical model of the international cybersecurity standards is provided. For cybersecurity assessment of such systems the case-oriented technique, which includes Advanced Security Assurance Case (ASAC) and an example on a wireless insulin pump of its application are provided.
2018-11-14
Afanasev, M. Y., Krylova, A. A., Shorokhov, S. A., Fedosov, Y. V., Sidorenko, A. S..  2018.  A Design of Cyber-Physical Production System Prototype Based on an Ethereum Private Network. 2018 22nd Conference of Open Innovations Association (FRUCT). :3–11.

The concept of cyber-physical production systems is highly discussed amongst researchers and industry experts, however, the implementation options for these systems rely mainly on obsolete technologies. Despite the fact that the blockchain is most often associated with cryptocurrency, it is fundamentally wrong to deny the universality of this technology and the prospects for its application in other industries. For example, in the insurance sector or in a number of identity verification services. This article discusses the deployment of the CPPS backbone network based on the Ethereum private blockchain system. The structure of the network is described as well as its interaction with the help of smart contracts, based on the consumption of cryptocurrency for various operations.

2020-11-23
Wang, X., Li, J..  2018.  Design of Intelligent Home Security Monitoring System Based on Android. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC). :2621–2624.
In view of the problem that the health status and safety monitoring of the traditional intelligent home are mainly dependent on the manual inspection, this paper introduces the intelligent home-based remote monitoring system by introducing the Internet-based Internet of Things technology into the intelligent home condition monitoring and safety assessment. The system's Android remote operation based on the MVP model to develop applications, the use of neural networks to deal with users daily use of operational data to establish the network data model, combined with S3C2440A microcontrollers in the gateway to the embedded Linux to facilitate different intelligent home drivers development. Finally, the power line communication network is used to connect the intelligent electrical appliances to the gateway. By calculating the success rate of the routing nodes, the success rate of the network nodes of 15 intelligent devices is 98.33%. The system can intelligent home many electrical appliances at the same time monitoring, to solve the system data and network congestion caused by the problem can not he security monitoring.
2019-03-04
Krishnamurthy, R., Meinel, M., Haupt, C., Schreiber, A., Mader, P..  2018.  DLR Secure Software Engineering. 2018 IEEE/ACM 1st International Workshop on Security Awareness from Design to Deployment (SEAD). :49–50.
DLR as research organization increasingly faces the task to share its self-developed software with partners or publish openly. Hence, it is very important to harden the softwares to avoid opening attack vectors. Especially since DLR software is typically not developed by software engineering or security experts. In this paper we describe the data-oriented approach of our new found secure software engineering group to improve the software development process towards more secure software. Therefore, we have a look at the automated security evaluation of software as well as the possibilities to capture information about the development process. Our aim is to use our information sources to improve software development processes to produce high quality secure software.
2019-02-14
Xu, Z., Shi, C., Cheng, C. C., Gong, N. Z., Guan, Y..  2018.  A Dynamic Taint Analysis Tool for Android App Forensics. 2018 IEEE Security and Privacy Workshops (SPW). :160-169.

The plethora of mobile apps introduce critical challenges to digital forensics practitioners, due to the diversity and the large number (millions) of mobile apps available to download from Google play, Apple store, as well as hundreds of other online app stores. Law enforcement investigators often find themselves in a situation that on the seized mobile phone devices, there are many popular and less-popular apps with interface of different languages and functionalities. Investigators would not be able to have sufficient expert-knowledge about every single app, sometimes nor even a very basic understanding about what possible evidentiary data could be discoverable from these mobile devices being investigated. Existing literature in digital forensic field showed that most such investigations still rely on the investigator's manual analysis using mobile forensic toolkits like Cellebrite and Encase. The problem with such manual approaches is that there is no guarantee on the completeness of such evidence discovery. Our goal is to develop an automated mobile app analysis tool to analyze an app and discover what types of and where forensic evidentiary data that app generate and store locally on the mobile device or remotely on external 3rd-party server(s). With the app analysis tool, we will build a database of mobile apps, and for each app, we will create a list of app-generated evidence in terms of data types, locations (and/or sequence of locations) and data format/syntax. The outcome from this research will help digital forensic practitioners to reduce the complexity of their case investigations and provide a better completeness guarantee of evidence discovery, thereby deliver timely and more complete investigative results, and eventually reduce backlogs at crime labs. In this paper, we will present the main technical approaches for us to implement a dynamic Taint analysis tool for Android apps forensics. With the tool, we have analyzed 2,100 real-world Android apps. For each app, our tool produces the list of evidentiary data (e.g., GPS locations, device ID, contacts, browsing history, and some user inputs) that the app could have collected and stored on the devices' local storage in the forms of file or SQLite database. We have evaluated our tool using both benchmark apps and real-world apps. Our results demonstrated that the initial success of our tool in accurately discovering the evidentiary data.

2020-05-15
Biswas, Arnab Kumar.  2018.  Efficient Timing Channel Protection for Hybrid (Packet/Circuit-Switched) Network-on-Chip. IEEE Transactions on Parallel and Distributed Systems. 29:1044—1057.
Continuous development of Network-on-Chip (NoC) enables different types of applications to run efficiently in a Multiprocessor System-on-Chip (MP-SoC). Guaranteed service (GS) can be provided by circuit switching NoC and Best effort service (BES) can be provided by packet switching NoC. A hybrid NoC containing both packet and circuit switching, can provide both types of services to these different applications. But these different applications can be of different security levels and one application can interfere another application's timing characteristics during network transmission. Using this interference, a malicious application can extract secret information from higher security level flows (timing side channel) or two applications can communicate covertly violating the system's security policy (covert timing channel). We propose different mechanisms to protect hybrid routers from timing channel attacks. For design space exploration, we propose three timing channel secure hybrid routers viz. Separate Hybrid (SH), Combined with Separate interface Hybrid (CSH), and Combined Hybrid (CH) routers. Simulation results show that all three routers are secure from timing channel when compared to a conventional hybrid router. Synthesis results show that the area increments compared to a conventional hybrid router are only 7.63, 11.8, and 19.69 percent for SH, CSH, and CH routers respectively. Thus simulation and synthesis results prove the effectiveness of our proposed mechanisms with acceptable area overheads.
2019-03-11
Xie, X. L., Xue, W. X..  2018.  An Empirical Study of Web Software Trustworthiness Measurement. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC). :1474–1481.

The aim of this paper is to present a fresh methodology of improved evidence synthesis for assessing software trustworthiness, which can unwind collisions stemming from proofs and these proofs' own uncertainties. To achieve this end, the paper, on the ground of ISO/IEC 9126 and web software attributes, models the indicator framework by factor analysis. Then, the paper conducts an calculation of the weight for each indicator via the technique of structural entropy and makes a fuzzy judgment matrix concerning specialists' comments. This study performs a computation of scoring and grade regarding software trustworthiness by using of the criterion concerning confidence degree discernment and comes up with countermeasures to promote trustworthiness. Relying on online accounting software, this study makes an empirical analysis to further confirm validity and robustness. This paper concludes with pointing out limitations.

Raj, R. V., Balasubramanian, K., Nandhini, T..  2018.  Establishing Trust by Detecting Malicious Nodes in Delay Tolerant Network. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1385–1390.
A Network consists of many nodes among which there may be a presence of misbehavior nodes. Delay Tolerant Network (DTN) is a network where the disconnections occur frequently. Store, carry and forward method is followed in DTN. The serious threat against routing in DTN is the selfish behavior. The main intention of selfish node is to save its own energy. Detecting the selfish node in DTN is very difficult. In this paper, a probabilistic misbehavior detection scheme called MAXTRUST has been proposed. Trusted Authority (TA) has been introduced in order to detect the behavior of the nodes periodically based on the task, forwarding history and contact history evidence. After collecting all the evidences from the nodes, the TA would check the inspection node about its behavior. The actions such as punishment or compensation would be given to that particular node based on its behavior. The TA performs probabilistic checking, in order to ensure security at a reduced cost. To further improve the efficiency, dynamic probabilistic inspection has been demonstrated using game theory analysis. The simulation results show the effectiveness and efficiency of the MAXTRUST scheme.
2019-03-25
Yıldırım, A. Y., Kurt, G. K..  2018.  A filter selection based physical layer security system. 2018 26th Signal Processing and Communications Applications Conference (SIU). :1–4.
In this paper a new physical layer security method is proposed against eavesdropping attacks. Our purpose is to demonstrate that performance of the legitimate receiver can be increased and performance of the eavesdropper can be decreased by matching between the roll of factors of root raised cosine filters in the transmitter and receiver. Through the matching between the roll of factors (a), a performance difference is generated between the legitimate receiver and the eavesdropper. By using three software defined radio nodes error vector magnitude of the legitimate receiver and the eavesdropper is measured according to roll of factors. Performance differences the receiver are demonstrated when the roll off factor is matched and mismatched.
2019-11-11
Wang, Xiaoyin, Qin, Xue, Bokaei Hosseini, Mitra, Slavin, Rocky, Breaux, Travis D., Niu, Jianwei.  2018.  GUILeak: Tracing Privacy Policy Claims on User Input Data for Android Applications. 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). :37–47.
The Android mobile platform supports billions of devices across more than 190 countries around the world. This popularity coupled with user data collection by Android apps has made privacy protection a well-known challenge in the Android ecosystem. In practice, app producers provide privacy policies disclosing what information is collected and processed by the app. However, it is difficult to trace such claims to the corresponding app code to verify whether the implementation is consistent with the policy. Existing approaches for privacy policy alignment focus on information directly accessed through the Android platform (e.g., location and device ID), but are unable to handle user input, a major source of private information. In this paper, we propose a novel approach that automatically detects privacy leaks of user-entered data for a given Android app and determines whether such leakage may violate the app's privacy policy claims. For evaluation, we applied our approach to 120 popular apps from three privacy-relevant app categories: finance, health, and dating. The results show that our approach was able to detect 21 strong violations and 18 weak violations from the studied apps.
2019-10-08
Tripathi, S. K., Pandian, K. K. S., Gupta, B..  2018.  Hardware Implementation of Dynamic Key Value Based Stream Cipher Using Chaotic Logistic Map. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1104–1108.

In the last few decades, the relative simplicity of the logistic map made it a widely accepted point in the consideration of chaos, which is having the good properties of unpredictability, sensitiveness in the key values and ergodicity. Further, the system parameters fit the requirements of a cipher widely used in the field of cryptography, asymmetric and symmetric key chaos based cryptography, and for pseudorandom sequence generation. Also, the hardware-based embedded system is configured on FPGA devices for high performance. In this paper, a novel stream cipher using chaotic logistic map is proposed. The two chaotic logistic maps are coded using Verilog HDL and implemented on commercially available FPGA hardware using Xilinx device: XC3S250E for the part: FT256 and operated at frequency of 62.20 MHz to generate the non-recursive key which is used in key scheduling of pseudorandom number generation (PRNG) to produce the key stream. The realization of proposed cryptosystem in this FPGA device accomplishes the improved efficiency equal to 0.1186 Mbps/slice. Further, the generated binary sequence from the experiment is analyzed for X-power, thermal analysis, and randomness tests are performed using NIST statistical.

2020-09-28
Chen, Yuqi, Poskitt, Christopher M., Sun, Jun.  2018.  Learning from Mutants: Using Code Mutation to Learn and Monitor Invariants of a Cyber-Physical System. 2018 IEEE Symposium on Security and Privacy (SP). :648–660.
Cyber-physical systems (CPS) consist of sensors, actuators, and controllers all communicating over a network; if any subset becomes compromised, an attacker could cause significant damage. With access to data logs and a model of the CPS, the physical effects of an attack could potentially be detected before any damage is done. Manually building a model that is accurate enough in practice, however, is extremely difficult. In this paper, we propose a novel approach for constructing models of CPS automatically, by applying supervised machine learning to data traces obtained after systematically seeding their software components with faults ("mutants"). We demonstrate the efficacy of this approach on the simulator of a real-world water purification plant, presenting a framework that automatically generates mutants, collects data traces, and learns an SVM-based model. Using cross-validation and statistical model checking, we show that the learnt model characterises an invariant physical property of the system. Furthermore, we demonstrate the usefulness of the invariant by subjecting the system to 55 network and code-modification attacks, and showing that it can detect 85% of them from the data logs generated at runtime.
2019-04-01
Stein, G., Peng, Q..  2018.  Low-Cost Breaking of a Unique Chinese Language CAPTCHA Using Curriculum Learning and Clustering. 2018 IEEE International Conference on Electro/Information Technology (EIT). :0595–0600.

Text-based CAPTCHAs are still commonly used to attempt to prevent automated access to web services. By displaying an image of distorted text, they attempt to create a challenge image that OCR software can not interpret correctly, but a human user can easily determine the correct response to. This work focuses on a CAPTCHA used by a popular Chinese language question-and-answer website and how resilient it is to modern machine learning methods. While the majority of text-based CAPTCHAs focus on transcription tasks, the CAPTCHA solved in this work is based on localization of inverted symbols in a distorted image. A convolutional neural network (CNN) was created to evaluate the likelihood of a region in the image belonging to an inverted character. It is used with a feature map and clustering to identify potential locations of inverted characters. Training of the CNN was performed using curriculum learning and compared to other potential training methods. The proposed method was able to determine the correct response in 95.2% of cases of a simulated CAPTCHA and 67.6% on a set of real CAPTCHAs. Potential methods to increase difficulty of the CAPTCHA and the success rate of the automated solver are considered.

2021-04-08
Spooner, D., Silowash, G., Costa, D., Albrethsen, M..  2018.  Navigating the Insider Threat Tool Landscape: Low Cost Technical Solutions to Jump Start an Insider Threat Program. 2018 IEEE Security and Privacy Workshops (SPW). :247—257.
This paper explores low cost technical solutions that can help organizations prevent, detect, and respond to insider incidents. Features and functionality associated with insider risk mitigation are presented. A taxonomy for high-level categories of insider threat tools is presented. A discussion of the relationship between the types of tools points out the nuances of insider threat control deployment, and considerations for selecting, implementing, and operating insider threat tools are provided.
2020-04-24
Chen, Lin, William Atwood, J..  2018.  Performance Evaluation for Secure Internet Group Management Protocol and Group Security Association Management Protocol. 2018 IEEE Canadian Conference on Electrical Computer Engineering (CCECE). :1—5.

Multicast distribution employs the model of many-to-many so that it is a more efficient way of data delivery compared to traditional one-to-one unicast distribution, which can benefit many applications such as media streaming. However, the lack of security features in its nature makes multicast technology much less popular in an open environment such as the Internet. Internet Service Providers (ISPs) take advantage of IP multicast technology's high efficiency of data delivery to provide Internet Protocol Television (IPTV) to their users. But without the full control on their networks, ISPs cannot collect revenue for the services they provide. Secure Internet Group Management Protocol (SIGMP), an extension of Internet Group Management Protocol (IGMP), and Group Security Association Management Protocol (GSAM), have been proposed to enforce receiver access control at the network level of IP multicast. In this paper, we analyze operational details and issues of both SIGMP and GSAM. An examination of the performance of both protocols is also conducted.