Biblio

Found 19604 results

2019-03-28
Ambassa, P. L., Kayem, A. V. D. M., Wolthusen, S. D., Meinel, C..  2018.  Privacy Risks in Resource Constrained Smart Micro-Grids. 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA). :527-532.

In rural/remote areas, resource constrained smart micro-grid (RCSMG) architectures can offer a cost-effective power management and supply alternative to national power grid connections. RCSMG architectures handle communications over distributed lossy networks to minimize operation costs. However, the unreliable nature of lossy networks makes privacy an important consideration. Existing anonymisation works on data perturbation work mainly by distortion with additive noise. Apply these solutions to RCSMGs is problematic, because deliberate noise additions must be distinguishable both from system and adversarial generated noise. In this paper, we present a brief survey of privacy risks in RCSMGs centered on inference, and propose a method of mitigating these risks. The lesson here is that while RCSMGs give users more control over power management and distribution, good anonymisation is essential to protecting personal information on RCSMGs.

2019-03-25
Pournaras, E., Ballandies, M., Acharya, D., Thapa, M., Brandt, B..  2018.  Prototyping Self-Managed Interdependent Networks - Self-Healing Synergies against Cascading Failures. 2018 IEEE/ACM 13th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). :119–129.
The interconnection of networks between several techno-socio-economic sectors such as energy, transport, and communication, questions the manageability and resilience of the digital society. System interdependencies alter the fundamental dynamics that govern isolated systems, which can unexpectedly trigger catastrophic instabilities such as cascading failures. This paper envisions a general-purpose, yet simple prototyping of self-management software systems that can turn system interdependencies from a cause of instability to an opportunity for higher resilience. Such prototyping proves to be challenging given the highly interdisciplinary scope of interdependent networks. Different system dynamics and organizational constraints such as the distributed nature of interdependent networks or the autonomy and authority of system operators over their controlled infrastructure perplex the design for a general prototyping approach, which earlier work has not yet addressed. This paper contributes such a modular design solution implemented as an open source software extension of SFINA, the Simulation Framework for Intelligent Network Adaptations. The applicability of the software artifact is demonstrated with the introduction of a novel self-healing mechanism for interdependent power networks, which optimizes power flow exchanges between a damaged and a healer network to mitigate power cascading failures. Results show a significant decrease in the damage spread by self-healing synergies, while the degree of interconnectivity between the power networks indicates a tradeoff between links survivability and load served. The contributions of this paper aspire to bring closer several research communities working on modeling and simulation of different domains with an economic and societal impact on the resilience of real-world interdependent networks.
2019-02-25
Vyamajala, S., Mohd, T. K., Javaid, A..  2018.  A Real-World Implementation of SQL Injection Attack Using Open Source Tools for Enhanced Cybersecurity Learning. 2018 IEEE International Conference on Electro/Information Technology (EIT). :0198–0202.

SQL injection is well known a method of executing SQL queries and retrieving sensitive information from a website connected database. This process poses a threat to those applications which are poorly coded in the today's world. SQL is considered as one of the top 10 vulnerabilities even in 2018. To keep a track of the vulnerabilities that each of the websites are facing, we employ a tool called Acunetix which allows us to find the vulnerabilities of a specific website. This tool also suggests measures on how to ensure preventive measures. Using this implementation, we discover vulnerabilities in an actual website. Such a real-world implementation would be useful for instructional use in a foundational cybersecurity course.

2018-07-26
2019-03-04
Gugelmann, D., Sommer, D., Lenders, V., Happe, M., Vanbever, L..  2018.  Screen watermarking for data theft investigation and attribution. 2018 10th International Conference on Cyber Conflict (CyCon). :391–408.
Organizations not only need to defend their IT systems against external cyber attackers, but also from malicious insiders, that is, agents who have infiltrated an organization or malicious members stealing information for their own profit. In particular, malicious insiders can leak a document by simply opening it and taking pictures of the document displayed on the computer screen with a digital camera. Using a digital camera allows a perpetrator to easily avoid a log trail that results from using traditional communication channels, such as sending the document via email. This makes it difficult to identify and prove the identity of the perpetrator. Even a policy prohibiting the use of any device containing a camera cannot eliminate this threat since tiny cameras can be hidden almost everywhere. To address this leakage vector, we propose a novel screen watermarking technique that embeds hidden information on computer screens displaying text documents. The watermark is imperceptible during regular use, but can be extracted from pictures of documents shown on the screen, which allows an organization to reconstruct the place and time of the data leak from recovered leaked pictures. Our approach takes advantage of the fact that the human eye is less sensitive to small luminance changes than digital cameras. We devise a symbol shape that is invisible to the human eye, but still robust to the image artifacts introduced when taking pictures. We complement this symbol shape with an error correction coding scheme that can handle very high bit error rates and retrieve watermarks from cropped and compressed pictures. We show in an experimental user study that our screen watermarks are not perceivable by humans and analyze the robustness of our watermarks against image modifications.
2019-01-21
Wang, J., Lin, S., Liu, C., Wang, J., Zhu, B., Jiang, Y..  2018.  Secrecy Capacity of Indoor Visible Light Communication Channels. 2018 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
In the indoor scenario, visible light communications (VLC) is regarded as one of the most promising candidates for future wireless communications. Recently, the physical layer security for indoor VLC has drawn considerable attention. In this paper, the secrecy capacity of indoor VLC is analyzed. Initially, an VLC system with a transmitter, a legitimate receiver, and an eavesdropper is established. In the system, the nonnegativity, the peak optical intensity constraint and the dimmable average optical intensity constraint are considered. Based on the principle of information theory, the closed-form expressions of the upper and the lower bounds on the secrecy capacity are derived, respectively. Numerical results show that the upper and the lower bounds on secrecy capacity are very tight, which verify the accuracy of the derived closed-form expressions.
2019-10-30
Meng, Na, Nagy, Stefan, Yao, Danfeng, Zhuang, Wenjie, Arango-Argoty, Gustavo.  2018.  Secure Coding Practices in Java: Challenges and Vulnerabilities. 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). :372-383.

The Java platform and its third-party libraries provide useful features to facilitate secure coding. However, misusing them can cost developers time and effort, as well as introduce security vulnerabilities in software. We conducted an empirical study on StackOverflow posts, aiming to understand developers' concerns on Java secure coding, their programming obstacles, and insecure coding practices. We observed a wide adoption of the authentication and authorization features provided by Spring Security - a third-party framework designed to secure enterprise applications. We found that programming challenges are usually related to APIs or libraries, including the complicated cross-language data handling of cryptography APIs, and the complex Java-based or XML-based approaches to configure Spring Security. In addition, we reported multiple security vulnerabilities in the suggested code of accepted answers on the StackOverflow forum. The vulnerabilities included disabling the default protection against Cross-Site Request Forgery (CSRF) attacks, breaking SSL/TLS security through bypassing certificate validation, and using insecure cryptographic hash functions. Our findings reveal the insufficiency of secure coding assistance and documentation, as well as the huge gap between security theory and coding practices.

Ghose, Nirnimesh, Lazos, Loukas, Li, Ming.  2018.  Secure Device Bootstrapping Without Secrets Resistant to Signal Manipulation Attacks. 2018 IEEE Symposium on Security and Privacy (SP). :819-835.
In this paper, we address the fundamental problem of securely bootstrapping a group of wireless devices to a hub, when none of the devices share prior associations (secrets) with the hub or between them. This scenario aligns with the secure deployment of body area networks, IoT, medical devices, industrial automation sensors, autonomous vehicles, and others. We develop VERSE, a physical-layer group message integrity verification primitive that effectively detects advanced wireless signal manipulations that can be used to launch man-in-the-middle (MitM) attacks over wireless. Without using shared secrets to establish authenticated channels, such attacks are notoriously difficult to thwart and can undermine the authentication and key establishment processes. VERSE exploits the existence of multiple devices to verify the integrity of the messages exchanged within the group. We then use VERSE to build a bootstrapping protocol, which securely introduces new devices to the network. Compared to the state-of-the-art, VERSE achieves in-band message integrity verification during secure pairing using only the RF modality without relying on out-of-band channels or extensive human involvement. It guarantees security even when the adversary is capable of fully controlling the wireless channel by annihilating and injecting wireless signals. We study the limits of such advanced wireless attacks and prove that the introduction of multiple legitimate devices can be leveraged to increase the security of the pairing process. We validate our claims via theoretical analysis and extensive experimentations on the USRP platform. We further discuss various implementation aspects such as the effect of time synchronization between devices and the effects of multipath and interference. Note that the elimination of shared secrets, default passwords, and public key infrastructures effectively addresses the related key management challenges when these are considered at scale.
2019-03-25
Pawlenka, T., Škuta, J..  2018.  Security system based on microcontrollers. 2018 19th International Carpathian Control Conference (ICCC). :344–347.
The article describes design and realization of security system based on single-chip microcontrollers. System includes sensor modules for unauthorized entrance detection based on magnetic contact, measuring carbon monoxide level, movement detection and measuring temperature and humidity. System also includes control unit, control panel and development board Arduino with ethernet interface connected for web server implementation.
2019-03-04
Hejderup, J., Deursen, A. v, Gousios, G..  2018.  Software Ecosystem Call Graph for Dependency Management. 2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER). :101–104.
A popular form of software reuse is the use of open source software libraries hosted on centralized code repositories, such as Maven or npm. Developers only need to declare dependencies to external libraries, and automated tools make them available to the workspace of the project. Recent incidents, such as the Equifax data breach and the leftpad package removal, demonstrate the difficulty in assessing the severity, impact and spread of bugs in dependency networks. While dependency checkers are being adapted as a counter measure, they only provide indicative information. To remedy this situation, we propose a fine-grained dependency network that goes beyond packages and into call graphs. The result is a versioned ecosystem-level call graph. In this paper, we outline the process to construct the proposed graph and present a preliminary evaluation of a security issue from a core package to an affected client application.
2019-02-08
Wang, M., Zhu, W., Yan, S., Wang, Q..  2018.  SoundAuth: Secure Zero-Effort Two-Factor Authentication Based on Audio Signals. 2018 IEEE Conference on Communications and Network Security (CNS). :1-9.

Two-factor authentication (2FA) popularly works by verifying something the user knows (a password) and something she possesses (a token, popularly instantiated with a smart phone). Conventional 2FA systems require extra interaction like typing a verification code, which is not very user-friendly. For improved user experience, recent work aims at zero-effort 2FA, in which a smart phone placed close to a computer (where the user enters her username/password into a browser to log into a server) automatically assists with the authentication. To prove her possession of the smart phone, the user needs to prove the phone is on the login spot, which reduces zero-effort 2FA to co-presence detection. In this paper, we propose SoundAuth, a secure zero-effort 2FA mechanism based on (two kinds of) ambient audio signals. SoundAuth looks for signs of proximity by having the browser and the smart phone compare both their surrounding sounds and certain unpredictable near-ultrasounds; if significant distinguishability is found, SoundAuth rejects the login request. For the ambient signals comparison, we regard it as a classification problem and employ a machine learning technique to analyze the audio signals. Experiments with real login attempts show that SoundAuth not only is comparable to existent schemes concerning utility, but also outperforms them in terms of resilience to attacks. SoundAuth can be easily deployed as it is readily supported by most smart phones and major browsers.

Arifianto, R. M., Sukarno, P., Jadied, E. M..  2018.  An SSH Honeypot Architecture Using Port Knocking and Intrusion Detection System. 2018 6th International Conference on Information and Communication Technology (ICoICT). :409-415.

This paper proposes an architecture of Secure Shell (SSH) honeypot using port knocking and Intrusion Detection System (IDS) to learn the information about attacks on SSH service and determine proper security mechanisms to deal with the attacks. Rapid development of information technology is directly proportional to the number of attacks, destruction, and data theft of a system. SSH service has become one of the popular targets from the whole vulnerabilities which is existed. Attacks on SSH service have various characteristics. Therefore, it is required to learn these characteristics by typically utilizing honeypots so that proper mechanisms can be applied in the real servers. Various attempts to learn the attacks and mitigate them have been proposed, however, attacks on SSH service are kept occurring. This research proposes a different and effective strategy to deal with the SSH service attack. This is done by combining port knocking and IDS to make the server keeps the service on a closed port and open it under user demand by sending predefined port sequence as an authentication process to control the access to the server. In doing so, it is evident that port knocking is effective in protecting SSH service. The number of login attempts obtained by using our proposed method is zero.

2019-12-17
Li, Wei, Belling, Samuel W..  2018.  Symmetric Eigen-Wavefunctions of Quantum Dot Bound States Resulting from Geometric Confinement. 2018 IEEE International Conference on Electro/Information Technology (EIT). :0266-0270.

Self-assembled semiconductor quantum dots possess an intrinsic geometric symmetry due to the crystal periodic structure. In order to systematically analyze the symmetric properties of quantum dots' bound states resulting only from geometric confinement, we apply group representation theory. We label each bound state for two kinds of popular quantum dot shapes: pyramid and half ellipsoid with the irreducible representation of the corresponding symmetric groups, i.e., C4v and C2v, respectively. Our study completes all the possible irreducible representation cases of groups C4v and C2v. Using the character theory of point groups, we predict the selection rule for electric dipole induced transitions. We also investigate the impact of quantum dot aspect ratio on the symmetric properties of the state wavefunction. This research provides a solid foundation to continue exploring quantum dot symmetry reduction or broken phenomena because of strain, band-mixing and shape irregularity. The results will benefit the researchers who are interested in quantum dot symmetry related effects such as absorption or emission spectra, or those who are studying quantum dots using analytical or numerical simulation approaches.

2019-02-14
Peng, H., Shoshitaishvili, Y., Payer, M..  2018.  T-Fuzz: Fuzzing by Program Transformation. 2018 IEEE Symposium on Security and Privacy (SP). :697-710.

Fuzzing is a simple yet effective approach to discover software bugs utilizing randomly generated inputs. However, it is limited by coverage and cannot find bugs hidden in deep execution paths of the program because the randomly generated inputs fail complex sanity checks, e.g., checks on magic values, checksums, or hashes. To improve coverage, existing approaches rely on imprecise heuristics or complex input mutation techniques (e.g., symbolic execution or taint analysis) to bypass sanity checks. Our novel method tackles coverage from a different angle: by removing sanity checks in the target program. T-Fuzz leverages a coverage-guided fuzzer to generate inputs. Whenever the fuzzer can no longer trigger new code paths, a light-weight, dynamic tracing based technique detects the input checks that the fuzzer-generated inputs fail. These checks are then removed from the target program. Fuzzing then continues on the transformed program, allowing the code protected by the removed checks to be triggered and potential bugs discovered. Fuzzing transformed programs to find bugs poses two challenges: (1) removal of checks leads to over-approximation and false positives, and (2) even for true bugs, the crashing input on the transformed program may not trigger the bug in the original program. As an auxiliary post-processing step, T-Fuzz leverages a symbolic execution-based approach to filter out false positives and reproduce true bugs in the original program. By transforming the program as well as mutating the input, T-Fuzz covers more code and finds more true bugs than any existing technique. We have evaluated T-Fuzz on the DARPA Cyber Grand Challenge dataset, LAVA-M dataset and 4 real-world programs (pngfix, tiffinfo, magick and pdftohtml). For the CGC dataset, T-Fuzz finds bugs in 166 binaries, Driller in 121, and AFL in 105. In addition, found 3 new bugs in previously-fuzzed programs and libraries.

2019-12-05
Yadav, Kuldeep, Roy, Sanjay Dhar, Kundu, Sumit.  2018.  Total Error Reduction in Presence of Malicious User in a Cognitive Radio Network. 2018 2nd International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech). :1-4.

Primary user emulation (PUE) attack causes security issues in a cognitive radio network (CRN) while sensing the unused spectrum. In PUE attack, malicious users transmit an emulated primary signal in spectrum sensing interval to secondary users (SUs) to forestall them from accessing the primary user (PU) spectrum bands. In the present paper, the defense against such attack by Neyman-Pearson criterion is shown in terms of total error probability. Impact of several parameters such as attacker strength, attacker's presence probability, and signal-to-noise ratio on SU is shown. Result shows proposed method protect the harmful effects of PUE attack in spectrum sensing.

2020-06-01
Nikolaidis, Fotios, Kossifidis, Nick, Leibovici, Thomas, Zertal, Soraya.  2018.  Towards a TRansparent I/O Solution. 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). :1221–1228.
The benefits of data distribution to multiple storage platforms with different characteristics have been widely acknowledged. Such systems are more tolerant to outages and bottlenecks and allow for more flexible policies regarding cost reduction, security and workload diversity. To leverage platforms simultaneously additional orchestration steps are needed. Existing approaches either implement such steps in the application's source code, resulting to minimum reusability across applications, or handle them at the infrastructure level. The latter usually involves over-engineering to handle different application behaviors and binds the system to a specific infrastructure. In this paper we present a middle-ware that decouples the I/O path from the application's source code and performs in-transit processing before data lands on the storage platforms. Abstracting the I/O process as a graph of reusable components allows the developers to easily implement complex storage solutions without the burden of writing custom code. Similarly, the administrators can create their own graph that reflects the infrastructure setup and append it to the preceding graph, so that various policies and infrastructure-related changes can be performed transparently to the application. Users can also extend the graph chain to enhance the application's functionality by using plug-ins. Our approach eliminates the need for custom I/O management code and allows for the applications to evolve independently of the storage back-end. To evaluate our system we employed a secure web service scenario that was seamlessly adapted to the changes in its storage back-end.
2019-01-21
Zhao, J., Kong, K., Hei, X., Tu, Y., Du, X..  2018.  A Visible Light Channel Based Access Control Scheme for Wireless Insulin Pump Systems. 2018 IEEE International Conference on Communications (ICC). :1–6.
Smart personal insulin pumps have been widely adopted by type 1 diabetes. However, many wireless insulin pump systems lack security mechanisms to protect them from malicious attacks. In previous works, the read-write attacks over RF channels can be launched stealthily and could jeopardize patients' lives. Protecting patients from such attacks is urgent. To address this issue, we propose a novel visible light channel based access control scheme for wireless infusion insulin pumps. This scheme employs an infrared photodiode sensor as a receiver in an insulin pump, and an infrared LED as an emitter in a doctor's reader (USB) to transmit a PIN/shared key to authenticate the doctor's USB. The evaluation results demonstrate that our scheme can reliably pass the authentication process with a low false accept rate (0.05% at a distance of 5cm).
2019-08-26
Wang, C., Jiang, Y., Zhao, X., Song, X., Gu, M., Sun, J..  2018.  Weak-Assert: A Weakness-Oriented Assertion Recommendation Toolkit for Program Analysis. 2018 IEEE/ACM 40th International Conference on Software Engineering: Companion (ICSE-Companion). :69–72.

Assertions are helpful in program analysis, such as software testing and verification. The most challenging part of automatically recommending assertions is to design the assertion patterns and to insert assertions in proper locations. In this paper, we develop Weak-Assert, a weakness-oriented assertion recommendation toolkit for program analysis of C code. A weakness-oriented assertion is an assertion which can help to find potential program weaknesses. Weak-Assert uses well-designed patterns to match the abstract syntax trees of source code automatically. It collects significant messages from trees and inserts assertions into proper locations of programs. These assertions can be checked by using program analysis techniques. The experiments are set up on Juliet test suite and several actual projects in Github. Experimental results show that Weak-Assert helps to find 125 program weaknesses in 26 actual projects. These weaknesses are confirmed manually to be triggered by some test cases.

2019-01-21
Kos, J., Fischer, I., Song, D..  2018.  Adversarial Examples for Generative Models. 2018 IEEE Security and Privacy Workshops (SPW). :36–42.

We explore methods of producing adversarial examples on deep generative models such as the variational autoencoder (VAE) and the VAE-GAN. Deep learning architectures are known to be vulnerable to adversarial examples, but previous work has focused on the application of adversarial examples to classification tasks. Deep generative models have recently become popular due to their ability to model input data distributions and generate realistic examples from those distributions. We present three classes of attacks on the VAE and VAE-GAN architectures and demonstrate them against networks trained on MNIST, SVHN and CelebA. Our first attack leverages classification-based adversaries by attaching a classifier to the trained encoder of the target generative model, which can then be used to indirectly manipulate the latent representation. Our second attack directly uses the VAE loss function to generate a target reconstruction image from the adversarial example. Our third attack moves beyond relying on classification or the standard loss for the gradient and directly optimizes against differences in source and target latent representations. We also motivate why an attacker might be interested in deploying such techniques against a target generative network.

2018-12-10
Wang, Dong, Ming, Jiang, Chen, Ting, Zhang, Xiaosong, Wang, Chao.  2018.  Cracking IoT Device User Account via Brute-force Attack to SMS Authentication Code. Proceedings of the First Workshop on Radical and Experiential Security. :57–60.

IoT device usually has an associated application to facilitate customers' interactions with the device, and customers need to register an account to use this application as well. Due to the popularity of mobile phone, a customer is encouraged to register an account with his own mobile phone number. After binding the device to his account, the customer can control his device remotely with his smartphone. When a customer forgets his password, he can use his mobile phone to receive a verification code that is sent by the Short Message Service (SMS) to authenticate and reset his password. If an attacker gains this code, he can steal the victim's account (reset password or login directly) to control the IoT device. Although IoT device vendors have already deployed a set of security countermeasures to protect account such as setting expiration time for SMS authentication code, HTTP encryption, and application packing, this paper shows that existing IoT account password reset via SMS authentication code are still vulnerable to brute-force attacks. In particular, we present an automatic brute-force attack to bypass current protections and then crack IoT device user account. Our preliminary study on popular IoT devices such as smart lock, smart watch, smart router, and sharing car has discovered six account login zero-day vulnerabilities.

2019-12-05
Yu, Yiding, Wang, Taotao, Liew, Soung Chang.  2018.  Deep-Reinforcement Learning Multiple Access for Heterogeneous Wireless Networks. 2018 IEEE International Conference on Communications (ICC). :1-7.

This paper investigates the use of deep reinforcement learning (DRL) in the design of a "universal" MAC protocol referred to as Deep-reinforcement Learning Multiple Access (DLMA). The design framework is partially inspired by the vision of DARPA SC2, a 3-year competition whereby competitors are to come up with a clean-slate design that "best share spectrum with any network(s), in any environment, without prior knowledge, leveraging on machine-learning technique". While the scope of DARPA SC2 is broad and involves the redesign of PHY, MAC, and Network layers, this paper's focus is narrower and only involves the MAC design. In particular, we consider the problem of sharing time slots among a multiple of time-slotted networks that adopt different MAC protocols. One of the MAC protocols is DLMA. The other two are TDMA and ALOHA. The DRL agents of DLMA do not know that the other two MAC protocols are TDMA and ALOHA. Yet, by a series of observations of the environment, its own actions, and the rewards - in accordance with the DRL algorithmic framework - a DRL agent can learn the optimal MAC strategy for harmonious co-existence with TDMA and ALOHA nodes. In particular, the use of neural networks in DRL (as opposed to traditional reinforcement learning) allows for fast convergence to optimal solutions and robustness against perturbation in hyper- parameter settings, two essential properties for practical deployment of DLMA in real wireless networks.

2019-06-10
Kargaard, J., Drange, T., Kor, A., Twafik, H., Butterfield, E..  2018.  Defending IT Systems against Intelligent Malware. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). :411-417.

The increasing amount of malware variants seen in the wild is causing problems for Antivirus Software vendors, unable to keep up by creating signatures for each. The methods used to develop a signature, static and dynamic analysis, have various limitations. Machine learning has been used by Antivirus vendors to detect malware based on the information gathered from the analysis process. However, adversarial examples can cause machine learning algorithms to miss-classify new data. In this paper we describe a method for malware analysis by converting malware binaries to images and then preparing those images for training within a Generative Adversarial Network. These unsupervised deep neural networks are not susceptible to adversarial examples. The conversion to images from malware binaries should be faster than using dynamic analysis and it would still be possible to link malware families together. Using the Generative Adversarial Network, malware detection could be much more effective and reliable.

2019-05-01
Pratama, R. F., Suwastika, N. A., Nugroho, M. A..  2018.  Design and Implementation Adaptive Intrusion Prevention System (IPS) for Attack Prevention in Software-Defined Network (SDN) Architecture. 2018 6th International Conference on Information and Communication Technology (ICoICT). :299-304.

Intrusion Prevention System (IPS) is a tool for securing networks from any malicious packet that could be sent from specific host. IPS can be installed on SDN network that has centralized logic architecture, so that IPS doesnt need to be installed on lots of nodes instead it has to be installed alongside the controller as center of logic network. IPS still has a flaw and that is the block duration would remain the same no matter how often a specific host attacks. For this reason, writer would like to make a system that not only integrates IPS on the SDN, but also designs an adaptive IPS by utilizing a fuzzy logic that can decide how long blocks are based on the frequency variable and type of attacks. From the results of tests that have been done, SDN network that has been equipped with adaptive IPS has the ability to detect attacks and can block the attacker host with the duration based on the frequency and type of attacks. The final result obtained is to make the SDN network safer by adding 0.228 milliseconds as the execute time required for the fuzzy algorithm in one process.

2019-01-31
Cheng, Yushi, Ji, Xiaoyu, Lu, Tianyang, Xu, Wenyuan.  2018.  DeWiCam: Detecting Hidden Wireless Cameras via Smartphones. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :1–13.

Wireless cameras are widely deployed in surveillance systems for security guarding. However, the privacy concerns associated with unauthorized videotaping, are drawing an increasing attention recently. Existing detection methods for unauthorized wireless cameras are either limited by their detection accuracy or requiring dedicated devices. In this paper, we propose DeWiCam, a lightweight and effective detection mechanism using smartphones. The basic idea of DeWiCam is to utilize the intrinsic traffic patterns of flows from wireless cameras. Compared with traditional traffic pattern analysis, DeWiCam is more challenging because it cannot access the encrypted information in the data packets. Yet, DeWiCam overcomes the difficulty and can detect nearby wireless cameras reliably. To further identify whether a camera is in an interested room, we propose a human-assisted identification model. We implement DeWiCam on the Android platform and evaluate it with extensive experiments on 20 cameras. The evaluation results show that DeWiCam can detect cameras with an accuracy of 99% within 2.7 s.

2018-12-10
Hu, Y., Abuzainab, N., Saad, W..  2018.  Dynamic Psychological Game for Adversarial Internet of Battlefield Things Systems. 2018 IEEE International Conference on Communications (ICC). :1–6.

In this paper, a novel game-theoretic framework is introduced to analyze and enhance the security of adversarial Internet of Battlefield Things (IoBT) systems. In particular, a dynamic, psychological network interdiction game is formulated between a soldier and an attacker. In this game, the soldier seeks to find the optimal path to minimize the time needed to reach a destination, while maintaining a desired bit error rate (BER) performance by selectively communicating with certain IoBT devices. The attacker, on the other hand, seeks to find the optimal IoBT devices to attack, so as to maximize the BER of the soldier and hinder the soldier's progress. In this game, the soldier and attacker's first- order and second-order beliefs on each others' behavior are formulated to capture their psychological behavior. Using tools from psychological game theory, the soldier and attacker's intention to harm one another is captured in their utilities, based on their beliefs. A psychological forward induction-based solution is proposed to solve the dynamic game. This approach can find a psychological sequential equilibrium of the game, upon convergence. Simulation results show that, whenever the soldier explicitly intends to frustrate the attacker, the soldier's material payoff is increased by up to 15.6% compared to a traditional dynamic Bayesian game.