Biblio
The EIIM model for ER allows for creation and maintenance of persistent entity identity structures. It accomplishes this through a collection of batch configurations that allow updates and asserted fixes to be made to the Identity knowledgebase (IKB). The model also provides a batch IR configuration that provides no maintenance activity but instead allows access to the identity information. This batch IR configuration is limited in a few ways. It is driven by the same rules used for maintaining the IKB, has no inherent method to identity "close" matches, and can only identify and return the positive matches. Through the decoupling of this configuration and its movements into an interactive role under the umbrella of an Identity Management Service, a more robust access method can be provided for the use of identity information. This more robust access to the information improved the quality of the information along multiple Information Quality dimensions.
Rapid advances in wireless ad hoc networks lead to increase their applications in real life. Since wireless ad hoc networks have no centralized infrastructure and management, they are vulnerable to several security threats. Malicious packet dropping is a serious attack against these networks. In this attack, an adversary node tries to drop all or partial received packets instead of forwarding them to the next hop through the path. A dangerous type of this attack is called black hole. In this attack, after absorbing network traffic by the malicious node, it drops all received packets to form a denial of service (DOS) attack. In this paper, a dynamic trust model to defend network against this attack is proposed. In this approach, a node trusts all immediate neighbors initially. Getting feedback from neighbors' behaviors, a node updates the corresponding trust value. The simulation results by NS-2 show that the attack is detected successfully with low false positive probability.
The need for increased surveillance due to increase in flight volume in remote or oceanic regions outside the range of traditional radar coverage has been fulfilled by the advent of space-based Automatic Dependent Surveillance — Broadcast (ADS-B) Surveillance systems. ADS-B systems have the capability of providing air traffic controllers with highly accurate real-time flight data. ADS-B is dependent on digital communications between aircraft and ground stations of the air route traffic control center (ARTCC); however these communications are not secured. Anyone with the appropriate capabilities and equipment can interrogate the signal and transmit their own false data; this is known as spoofing. The possibility of this type of attacks decreases the situational awareness of United States airspace. The purpose of this project is to design a secure transmission framework that prevents ADS-B signals from being spoofed. Three alternative methods of securing ADS-B signals are evaluated: hashing, symmetric encryption, and asymmetric encryption. Security strength of the design alternatives is determined from research. Feasibility criteria are determined by comparative analysis of alternatives. Economic implications and possible collision risk is determined from simulations that model the United State airspace over the Gulf of Mexico and part of the airspace under attack respectively. The ultimate goal of the project is to show that if ADS-B signals can be secured, the situational awareness can improve and the ARTCC can use information from this surveillance system to decrease the separation between aircraft and ultimately maximize the use of the United States airspace.
Artificial monitoring is no longer able to match the rapid growth of cybercrime, it is in great need to develop a new spatial analysis technology which allows emergency events to get rapidly and accurately locked in real environment, furthermore, to establish correlative analysis model for cybercrime prevention strategy. On the other hand, Geography information system has been changed virtually in data structure, coordinate system and analysis model due to the “uncertainty and hyper-dimension” characteristics of network object and behavior. In this paper, the spatial rules of typical cybercrime are explored on base of GIS with Internet searching and IP tracking technology: (1) Setup spatial database through IP searching based on criminal evidence. (2)Extend GIS data-structure and spatial models, add network dimension and virtual attribution to realize dynamic connection between cyber and real space. (3)Design cybercrime monitoring and prevention system to discover the cyberspace logics based on spatial analysis.
Memristors are an attractive option for use in future memory architectures due to their non-volatility, high density and low power operation. Notwithstanding these advantages, memristors and memristor-based memories are prone to high defect densities due to the non-deterministic nature of nanoscale fabrication. The typical approach to fault detection and diagnosis in memories entails testing one memory cell at a time. This is time consuming and does not scale for the dense, memristor-based memories. In this paper, we integrate solutions for detecting and locating faults in memristors, and ensure post-silicon recovery from memristor failures. We propose a hybrid diagnosis scheme that exploits sneak-paths inherent in crossbar memories, and uses March testing to test and diagnose multiple memory cells simultaneously, thereby reducing test time. We also provide a repair mechanism that prevents faults in the memory from being activated. The proposed schemes enable and leverage sneak paths during fault detection and diagnosis modes, while still maintaining a sneak-path free crossbar during normal operation. The proposed hybrid scheme reduces fault detection and diagnosis time by ~44%, compared to traditional March tests, and repairs the faulty cell with minimal overhead.
Since the past 20 years the uses of web in daily life is increasing and becoming trend now. As the use of the web is increasing, the use of web application is also increasing. Apparently most of the web application exists up to today have some vulnerability that could be exploited by unauthorized person. Some of well-known web application vulnerabilities are Structured Query Language (SQL) Injection, Cross-Site Scripting (XSS) and Cross-Site Request Forgery (CSRF). By compromising with these web application vulnerabilities, the system cracker can gain information about the user and lead to the reputation of the respective organization. Usually the developers of web applications did not realize that their web applications have vulnerabilities. They only realize them when there is an attack or manipulation of their code by someone. This is normal as in a web application, there are thousands of lines of code, therefore it is not easy to detect if there are some loopholes. Nowadays as the hacking tools and hacking tutorials are easier to get, lots of new hackers are born. Even though SQL injection is very easy to protect against, there are still large numbers of the system on the internet are vulnerable to this type of attack because there will be a few subtle condition that can go undetected. Therefore, in this paper we propose a detection model for detecting and recognizing the web vulnerability which is; SQL Injection based on the defined and identified criteria. In addition, the proposed detection model will be able to generate a report regarding the vulnerability level of the web application. As the consequence, the proposed detection model should be able to decrease the possibility of the SQL Injection attack that can be launch onto the web application.
Long Term Evolution (LTE) networks designed by 3rd Generation Partnership Project (3GPP) represent a widespread technology. LTE is mainly influenced by high data rates, minimum delay and the capacity due to scalable bandwidth and its flexibility. With the rapid and widespread use LTE networks, and increase the use in data/video transmission and Internet applications in general, accordingly, the challenges of securing and speeding up data communication in such networks is also increased. Authentication in LTE networks is very important process because most of the coming attacks occur during this stage. Attackers try to be authenticated and then launch the network resources and prevent the legitimate users from the network services. The basics of Extensible Authentication Protocol-Authentication and Key Agreement (EAP-AKA) are used in LTE AKA protocol which is called Evolved Packet System AKA (EPS-AKA) protocol to secure LTE network, However it still suffers from various vulnerabilities such as disclosure of the user identity, computational overhead, Man In The Middle (MITM) attack and authentication delay. In this paper, an Efficient EPS-AKA protocol (EEPS-AKA) is proposed to overcome those problems. The proposed protocol is based on the Simple Password Exponential Key Exchange (SPEKE) protocol. Compared to previous proposed methods, our method is faster, since it uses a secret key method which is faster than certificate-based methods, In addition, the size of messages exchanged between User Equipment (UE) and Home Subscriber Server (HSS) is reduced, this reduces authentication delay and storage overhead effectively. The automated validation of internet security protocols and applications (AVISPA) tool is used to provide a formal verification. Results show that the proposed EEPS-AKA is efficient and secure against active and passive attacks.
This paper proposes an efficient diagnosis-aware ATPG method that can quickly identify equivalent-fault pairs and generate diagnosis patterns for nonequivalent-fault pairs, where an (non)equivalent-fault pair contains two stuck-at faults that are (not) equivalent. A novel fault injection method is developed which allows one to embed all fault pairs undistinguished by the conventional test patterns into a circuit model with only one copy of the original circuit. Each pair of faults to be processed is transformed to a stuck-at fault and all fault pairs can be dealt with by invoking an ordinary ATPG tool for stuck-at faults just once. High efficiency of diagnosis pattern generation can be achieved due to 1) the circuit to be processed is read only once, 2) the data structure for ATPG process is constructed only once, 3) multiple fault pairs can be processed at a time, and 4) only one copy of the original circuit is needed. Experimental results show that this is the first reported work that can achieve 100% diagnosis resolutions for all ISCAS'89 and IWLS'05 benchmark circuits using an ordinary ATPG tool. Furthermore, we also find that the total number of patterns required to deal with all fault pairs in our method is smaller than that of the current state-of-the-art work.
Feedback loss can severely degrade the overall system performance, in addition, it can affect the control and computation of the Cyber-physical Systems (CPS). CPS hold enormous potential for a wide range of emerging applications including stochastic and time-critical traffic patterns. Stochastic data has a randomness in its nature which make a great challenge to maintain the real-time control whenever the data is lost. In this paper, we propose a data recovery scheme, called the Efficient Temporal and Spatial Data Recovery (ETSDR) scheme for stochastic incomplete feedback of CPS. In this scheme, we identify the temporal model based on the traffic patterns and consider the spatial effect of the nearest neighbor. Numerical results reveal that the proposed ETSDR outperforms both the weighted prediction (WP) and the exponentially weighted moving average (EWMA) algorithm regardless of the increment percentage of missing data in terms of the root mean square error, the mean absolute error, and the integral of absolute error.
Due to the high volume and velocity of big data, it is an effective option to store big data in the cloud, because the cloud has capabilities of storing big data and processing high volume of user access requests. Attribute-Based Encryption (ABE) is a promising technique to ensure the end-to-end security of big data in the cloud. However, the policy updating has always been a challenging issue when ABE is used to construct access control schemes. A trivial implementation is to let data owners retrieve the data and re-encrypt it under the new access policy, and then send it back to the cloud. This method incurs a high communication overhead and heavy computation burden on data owners. In this paper, we propose a novel scheme that enabling efficient access control with dynamic policy updating for big data in the cloud. We focus on developing an outsourced policy updating method for ABE systems. Our method can avoid the transmission of encrypted data and minimize the computation work of data owners, by making use of the previously encrypted data with old access policies. Moreover, we also design policy updating algorithms for different types of access policies. The analysis show that our scheme is correct, complete, secure and efficient.
Effective digital identity management system is a critical enabler of cloud computing, since it supports the provision of the required assurances to the transacting parties. Such assurances sometimes require the disclosure of sensitive personal information. Given the prevalence of various forms of identity abuses on the Internet, a re-examination of the factors underlying cloud services acquisition has become critical and imperative. In order to provide better assurances, parties to cloud transactions must have confidence in service providers' ability and integrity in protecting their interest and personal information. Thus a trusted cloud identity ecosystem could promote such user confidence and assurances. Using a qualitative research approach, this paper explains the role of trust in cloud service acquisition by organizations. The paper focuses on the processes of acquisition of cloud services by financial institutions in Ghana. The study forms part of comprehensive study on the monetization of personal Identity information.
Effective digital identity management system is a critical enabler of cloud computing, since it supports the provision of the required assurances to the transacting parties. Such assurances sometimes require the disclosure of sensitive personal information. Given the prevalence of various forms of identity abuses on the Internet, a re-examination of the factors underlying cloud services acquisition has become critical and imperative. In order to provide better assurances, parties to cloud transactions must have confidence in service providers' ability and integrity in protecting their interest and personal information. Thus a trusted cloud identity ecosystem could promote such user confidence and assurances. Using a qualitative research approach, this paper explains the role of trust in cloud service acquisition by organizations. The paper focuses on the processes of acquisition of cloud services by financial institutions in Ghana. The study forms part of comprehensive study on the monetization of personal Identity information.
This paper describes a high-performance and space-efficient memory-resident datastore for text analytics systems based on a hash table for fast access, a dynamic trie for staging and a list of Level-Order Unary Degree Sequence (LOUDS) tries for compactness. We achieve efficient memory allocation and data placement by placing freqently access keys in the hash table, and infrequently accessed keys in the LOUDS tries without using conventional cache algorithms. Our algorithm also dynamically changes memory allocation sizes for these data structures according to the remaining available memory size. This technique yields 38.6% to 52.9% better throughput than a double array trie - a conventional fast and compact datastore.
This paper presents an efficient implementation of key-value store using Bloom filters on FPGA. Bloom filters are used to reduce the number of unnecessary accesses to the hash tables, thereby improving the performance. Additionally, for better hash table utilization, we use a modified cuckoo hashing algorithm for the implementation. They are implemented in FPGA to further improve the performance. Experimental results show significant performance improvement over existing approaches.
Wide-area monitoring and control (WAMC) systems are the next-generation operational-management systems for electric power systems. The main purpose of such systems is to provide high resolution real-time situational awareness in order to improve the operation of the power system by detecting and responding to fast evolving phenomenon in power systems. From an information and communication technology (ICT) perspective, the nonfunctional qualities of these systems are increasingly becoming important and there is a need to evaluate and analyze the factors that impact these nonfunctional qualities. Enterprise architecture methods, which capture properties of ICT systems in architecture models and use these models as a basis for analysis and decision making, are a promising approach to meet these challenges. This paper presents a quantitative architecture analysis method for the study of WAMC ICT architectures focusing primarily on the interoperability and cybersecurity aspects.
More and more intelligent functions are proposed, designed and implemented in meters to make the power supply be smart. However, these complex functions also bring risks to the smart meters, and they become susceptible to vulnerabilities and attacks. We present the rat-group attack in this paper, which exploits the vulnerabilities of smart meters in the cyber world, but spreads in the physical world due to the direct economic benefits. To the best of our knowledge, no systematic work has been conducted on this attack. Game theory is then applied to analyze this attack, and two game models are proposed and compared under different assumptions. The analysis results suggest that the power company shall follow an open defense policy: disclosing the defense parameters to all users (i.e., the potential attackers), results in less loss in the attack.
Cloud computing is a new paradigm and emerged technology for hosting and delivering resources over a network such as internet by using concepts of virtualization, processing power and storage. However, many challenging issues are still unclear in cloud-based environments and decrease the rate of reliability and efficiency for service providers and users. User Authentication is one of the most challenging issues in cloud-based environments and according to this issue this paper proposes an efficient user authentication model that involves both of defined phases during registration and accessing processes. Geo Detection and Digital Signature Authorization (GD2SA) is a user authentication tool for provisional access permission in cloud computing environments. The main aim of GD2SA is to compare the location of an un-registered device with the location of the user by using his belonging devices (e.g. smart phone). In addition, this authentication algorithm uses the digital signature of account owner to verify the identity of applicant. This model has been evaluated in this paper according to three main parameters: efficiency, scalability, and security. In overall, the theoretical analysis of the proposed model showed that it can increase the rate of efficiency and reliability in cloud computing as an emerging technology.
Explicit formulae and complexities of bit-parallel GF(2n) squarers for a new class of irreducible pentanomials xn + xn-1 + xk + x + 1, where n is odd and 1 <; k <; (n - 1)/2 are presented. The squarer is based on the generalised polynomial basis of GF(2n). Its gate delay matches the best results, whereas its XOR gate complexity is n + 1, which is only about two thirds of the current best results.
We propose Authentication and Key Agreement (AKA) for Machine Type Communications (MTC) in LTE-Advanced. This protocol is based on an idea of grouping devices so that it would reduce signaling congestion in the access network and overload on the single authentication server. We verified that this protocol is designed to be secure against many attacks by using a software verification tool. Furthermore, performance evaluation suggests that this protocol is efficient with respect to authentication overhead and handover delay.
One Time Password which is fixed length strings to perform authentication in electronic media is used as a one-time. In this paper, One Time Password production methods which based on hash functions were investigated. Keccak digest algorithm was used for the production of One Time Password. This algorithm has been selected as the latest standards for hash algorithm in October 2012 by National Instute of Standards and Technology. This algorithm is preferred because it is faster and safer than the others. One Time Password production methods based on hash functions is called Hashing-Based Message Authentication Code structure. In these structures, the key value is using with the hash function to generate the Hashing-Based Message Authentication Code value. Produced One Time Password value is based on the This value. In this application, the length of the value One Time Password was the eight characters to be useful in practice.
A botnet in mobile networks is a collection of compromised nodes due to mobile malware, which are able to perform coordinated attacks. Different from Internet botnets, mobile botnets do not need to propagate using centralized infrastructures, but can keep compromising vulnerable nodes in close proximity and evolving organically via data forwarding. Such a distributed mechanism relies heavily on node mobility as well as wireless links, therefore breaks down the underlying premise in existing epidemic modeling for Internet botnets. In this paper, we adopt a stochastic approach to study the evolution and impact of mobile botnets. We find that node mobility can be a trigger to botnet propagation storms: the average size (i.e., number of compromised nodes) of a botnet increases quadratically over time if the mobility range that each node can reach exceeds a threshold; otherwise, the botnet can only contaminate a limited number of nodes with average size always bounded above. This also reveals that mobile botnets can propagate at the fastest rate of quadratic growth in size, which is substantially slower than the exponential growth of Internet botnets. To measure the denial-of-service impact of a mobile botnet, we define a new metric, called last chipper time, which is the last time that service requests, even partially, can still be processed on time as the botnet keeps propagating and launching attacks. The last chipper time is identified to decrease at most on the order of 1/√B, where B is the network bandwidth. This result reveals that although increasing network bandwidth can help with mobile services; at the same time, it can indeed escalate the risk for services being disrupted by mobile botnets.
In cloud data center, shared storage with good management is a main structure used for the storage of virtual machines (VM). In this paper, we proposed Hybrid VM storage (HVSTO), a privacy preserving shared storage system designed for the virtual machine storage in large-scale cloud data center. Unlike traditional shared storage, HVSTO adopts a distributed structure to preserve privacy of virtual machines, which are a threat in traditional centralized structure. To improve the performance of I/O latency in this distributed structure, we use a hybrid system to combine solid state disk and distributed storage. From the evaluation of our demonstration system, HVSTO provides a scalable and sufficient throughput for the platform as a service infrastructure.
The unified power flow controller (UPFC) has attracted much attention recently because of its capability in controlling the active and reactive power flows. The normal operation of UPFC is dependent on both its physical part and the associated cyber system. Thus malicious cyber attacks may impact the reliability of UPFC. As more information and communication technologies are being integrated into the current power grid, more frequent occurrences of cyber attacks are possible. In this paper, the cyber architecture of UPFC is analyzed, and the possible attack scenarios are considered and discussed. Based on the interdependency of the physical part and the cyber part, an integrated reliability model for UPFC is proposed and analyzed. The impact of UPFC on the overall system reliability is examined, and it is shown that cyber attacks against UPFC may yield an adverse influence.
User authentication is an important security mechanism that allows mobile users to be granted access to roaming service offered by the foreign agent with assistance of the home agent in mobile networks. While security-related issues have been well studied, how to preserve user privacy in this type of protocols still remains an open problem. In this paper, we revisit the privacy-preserving two-factor authentication scheme presented by Li et al. at WCNC 2013. We show that, despite being armed with a formal security proof, this scheme actually cannot achieve the claimed feature of user anonymity and is insecure against offline password guessing attacks, and thus, it is not recommended for practical applications. Then, we figure out how to fix these identified drawbacks, and suggest an enhanced scheme with better security and reasonable efficiency. Further, we conjecture that under the non-tamper-resistant assumption of the smart cards, only symmetric-key techniques are intrinsically insufficient to attain user anonymity.