Biblio
The iterative consensus problem requires a set of processes or agents with different initial values, to interact and update their states to eventually converge to a common value. Pro- tocols solving iterative consensus serve as building blocks in a variety of systems where distributed coordination is re- quired for load balancing, data aggregation, sensor fusion, filtering, and synchronization. In this paper, we introduce the private iterative consensus problem where agents are re- quired to converge while protecting the privacy of their ini- tial values from honest but curious adversaries. Protecting the initial states, in many applications, suffice to protect all subsequent states of the individual participants.
We adapt the notion of differential privacy in this setting of iterative computation. Next, we present (i) a server-based and (ii) a completely distributed randomized mechanism for solving differentially private iterative consensus with adver- saries who can observe the messages as well as the internal states of the server and a subset of the clients. Our analysis establishes the tradeoff between privacy and the accuracy.
Researchers interested in security often wish to introduce new primitives into a language. Extensible languages hold promise in such scenarios, but only if the extension mechanism is sufficiently safe and expressive. This paper describes several modifications to an extensible language motivated by end-to-end security concerns.
The smart grid is an ever-growing complex dynamic system with multiple interleaved layers and a large number of interacting components. In this talk, we discuss how game-theoretic tools can be used as an analytical tool to understand strategic interactions at different layers of the system and between different decision-making entities for distributed management of energy resources. We first investigate the issue of integration of renewable energy resources into the power grid. We establish a game-theoretic framework for modeling the strategic behavior of buses that are connected to renewable energy resources, and study the Nash equilibrium solution of distributed power generation at each bus. Our framework uses a cross-layer approach, taking into account the economic factors as well as system stability issues at the physical layer. In the second part of the talk, we discuss the issue of integration of plug-in electric vehicles (PHEVs) for vehicle-to-grid (V2G) transactions on the smart grid. Electric vehicles will be capable of buying and selling energy from smart parking lots in the future. We propose a multi-resolution and multi-layer stochastic differential game framework to study the dynamic decision-making process among PHEVs. We analyze the stochastic game in a large-population regime and account for the multiple types of interactions in the grid. Using these two settings, we demonstrate that game theory is a versatile tool to address many fundamental and emerging issues in the smart grid.
Presented at the Eighth Annual Carnegie Mellon Conference on the Electricity Industry Data-Driven Sustainable Engergy Systems in Pittsburgh, PA, March 12-14, 2012.
To help users create stronger text-based passwords, many web sites have deployed password meters that provide visual feedback on password strength. Although these meters are in wide use, their effects on the security and usability of passwords have not been well studied.
We present a 2,931-subject study of password creation in the presence of 14 password meters. We found that meters with a variety of visual appearances led users to create longer passwords. However, significant increases in resistance to a password-cracking algorithm were only achieved using meters that scored passwords stringently. These stringent meters also led participants to include more digits, symbols, and uppercase letters.
Password meters also affected the act of password creation. Participants who saw stringent meters spent longer creating their password and were more likely to change their password while entering it, yet they were also more likely to find the password meter annoying. However, the most stringent meter and those without visual bars caused participants to place less importance on satisfying the meter. Participants who saw more lenient meters tried to fill the meter and were averse to choosing passwords a meter deemed "bad" or "poor." Our findings can serve as guidelines for administrators seeking to nudge users towards stronger passwords.