Biblio

Found 19604 results

2017-02-03
Quanyan Zhu, University of Illinois at Urbana-Champaign, Carol Fung, Raouf Boutaba, Tamer Başar, University of Illinois at Urbana-Champaign.  2012.  GUIDEX: A Game-Theoretic Incentive-Based Mechanism for Intrusion Detection Networks. IEEE Journal on Selected Areas in Communications. 30(11)

Traditional intrusion detection systems (IDSs) work in isolation and can be easily compromised by unknown threats. An intrusion detection network (IDN) is a collaborative IDS network intended to overcome this weakness by allowing IDS peers to share detection knowledge and experience, and hence improve the overall accuracy of intrusion assessment. In this work, we design an IDN system, called GUIDEX, using gametheoretic modeling and trust management for peers to collaborate truthfully and actively. We first describe the system architecture and its individual components, and then establish a gametheoretic framework for the resource management component of GUIDEX. We establish the existence and uniqueness of a Nash equilibrium under which peers can communicate in a reciprocal incentive compatible manner. Based on the duality of the problem, we develop an iterative algorithm that converges geometrically to the equilibrium. Our numerical experiments and discrete event simulation demonstrate the convergence to the Nash equilibrium and the security features of GUIDEX against free riders, dishonest insiders and DoS attacks

2018-05-23
A. Ayoub, B. Kim, I. Lee, O. Sokolsky.  2012.  A Safety Case Pattern for Model-Based Development Approach. Proceedings of the 4$^{th}$ NASA Formal Methods Symposium. :223–243.
Pajic, M., Zhihao Jiang, Insup Lee, Sokolsky, O., Mangharam, R..  2012.  From Verification to Implementation: A Model Translation Tool and a Pacemaker Case Study. Real-Time and Embedded Technology and Applications Symposium (RTAS), 2012 IEEE 18th. :173-184.
2020-08-28
Huang, Bai-Ruei, Lin, Chang Hong, Lee, Chia-Han.  2012.  Mobile augmented reality based on cloud computing. and Identification Anti-counterfeiting, Security. :1—5.
In this paper, we implemented a mobile augmented reality system based on cloud computing. This system uses a mobile device with a camera to capture images of book spines and sends processed features to the cloud. In the cloud, the features are compared with the database and the information of the best matched book would be sent back to the mobile device. The information will then be rendered on the display via augmented reality. In order to reduce the transmission cost, the mobile device is used to perform most of the image processing tasks, such as the preprocessing, resizing, corner detection, and augmented reality rendering. On the other hand, the cloud is used to realize routine but large quantity feature comparisons. Using the cloud as the database also makes the future extension much more easily. For our prototype system, we use an Android smart phone as our mobile device, and Chunghwa Telecoms hicloud as the cloud.
2018-05-25
D. Zhang, T. He.  2012.  pCruise: Reducing Cruising Miles for Taxicab Networks. 2012 IEEE 33rd Real-Time Systems Symposium. :85-94.
2018-07-06
Kloft, Marius, Laskov, Pavel.  2012.  Security Analysis of Online Centroid Anomaly Detection. J. Mach. Learn. Res.. 13:3681–3724.

Security issues are crucial in a number of machine learning applications, especially in scenarios dealing with human activity rather than natural phenomena (e.g., information ranking, spam detection, malware detection, etc.). In such cases, learning algorithms may have to cope with manipulated data aimed at hampering decision making. Although some previous work addressed the issue of handling malicious data in the context of supervised learning, very little is known about the behavior of anomaly detection methods in such scenarios. In this contribution, we analyze the performance of a particular method–online centroid anomaly detection–in the presence of adversarial noise. Our analysis addresses the following security-related issues: formalization of learning and attack processes, derivation of an optimal attack, and analysis of attack efficiency and limitations. We derive bounds on the effectiveness of a poisoning attack against centroid anomaly detection under different conditions: attacker's full or limited control over the traffic and bounded false positive rate. Our bounds show that whereas a poisoning attack can be effectively staged in the unconstrained case, it can be made arbitrarily difficult (a strict upper bound on the attacker's gain) if external constraints are properly used. Our experimental evaluation, carried out on real traces of HTTP and exploit traffic, confirms the tightness of our theoretical bounds and the practicality of our protection mechanisms.

2018-05-17
J. C. Gallagher, D. B. Doman, M. W. Oppenheimer.  2012.  The Technology of the Gaps: An Evolvable Hardware Synthesized Oscillator for the Control of a Flapping-Wing Micro Air Vehicle. IEEE Transactions on Evolutionary Computation. 16:753-768.

To date, work in evolvable and adaptive hardware (EAH) has been largely isolated from primary inclusion into larger design processes. Almost without exception, EAH efforts are aimed at creating systems whole cloth, creating drop-in replacements for existing components of a larger design, or creating after-the-fact fixes for designs found to be deficient. This paper will discuss early efforts in integrating EAH methods into the design of a controller for a flapping-wing micro air vehicle (FWMAV). The FWMAV project is extensive, multidisciplinary, and on going. Because EAH methods were in consideration during its earliest design stages, this project provides a rich environment in which to explore means of effectively combining EAH and traditional design methodologies. In addition to providing a concrete EAH design that addresses potential problems with FWMAV flight in a unique way, this paper will also provide a provisional list of EAH design integration principles, drawn from our experiences to date.

2018-05-23
King, Andrew, Fortino, Kelsea, Stevens, Nicholas, Shah, Sachin, Fortino-Mullen, Margaret, Lee, Insup.  2012.  Evaluation of a smart alarm for intensive care using clinical data. 34$^{th}$ Annual International Conference of the IEEE Engineering in Medicine and Biology Society.. :166–169.
2022-04-20
Junjie, Tang, Jianjun, Zhao, Jianwan, Ding, Liping, Chen, Gang, Xie, Bin, Gu, Mengfei, Yang.  2012.  Cyber-Physical Systems Modeling Method Based on Modelica. 2012 IEEE Sixth International Conference on Software Security and Reliability Companion. :188–191.
Cyber-physical systems (CPS) is an integration of computation with physical systems and physical processes. It is widely used in energy, health and other industrial areas. Modeling and simulation is of the greatest challenges in CPS research. Modelica has a great potentiality in the modeling and simulation of CPS. We analyze the characteristics and requirements of CPS modeling, and also the features of Modelica in the paper. In respect of information model, physical model and model interface, this paper introduces a unified modeling method for CPS, based on Modelica. The method provides a reliable foundation for the design, analysis and verification of CPS.
2019-09-12
Shari Lawrence Pfleegera, Deanna Caputo.  2012.  Leveraging behavioral science to mitigate cyber security risk. Science Direct. 31(4):597-611.

Most efforts to improve cyber security focus primarily on incorporating new technological approaches in products and processes. However, a key element of improvement involves acknowledging the importance of human behavior when designing, building and using cyber security technology. In this survey paper, we describe why incorporating an understanding of human behavior into cyber security products and processes can lead to more effective technology. We present two examples: the first demonstrates how leveraging behavioral science leads to clear improvements, and the other illustrates how behavioral science offers the potential for significant increases in the effectiveness of cyber security. Based on feedback collected from practitioners in preliminary interviews, we narrow our focus to two important behavioral aspects: cognitive load and bias. Next, we identify proven and potential behavioral science findings that have cyber security relevance, not only related to cognitive load and bias but also to heuristics and behavioral science models. We conclude by suggesting several next steps for incorporating behavioral science findings in our technological design, development and use. 

2021-05-25
Qian, Kai, Dan Lo, Chia-Tien, Guo, Minzhe, Bhattacharya, Prabir, Yang, Li.  2012.  Mobile security labware with smart devices for cybersecurity education. IEEE 2nd Integrated STEM Education Conference. :1—3.

Smart mobile devices such as smartphones and tablets have become an integral part of our society. However, it also becomes a prime target for attackers with malicious intents. There have been a number of efforts on developing innovative courseware to promote cybersecurity education and to improve student learning; however, hands-on labs are not well developed for smart mobile devices and for mobile security topics. In this paper, we propose to design and develop a mobile security labware with smart mobile devices to promote the cybersecurity education. The integration of mobile computing technologies and smart devices into cybersecurity education will connect the education to leading-edge information technologies, motivate and engage students in security learning, fill in the gap with IT industry need, and help faculties build expertise on mobile computing. In addition, the hands-on experience with mobile app development will promote student learning and supply them with a better understanding of security knowledge not only in classical security domains but also in the emerging mobile security areas.

2014-09-26
Yajin Zhou, Xuxian Jiang.  2012.  Dissecting Android Malware: Characterization and Evolution. Security and Privacy (SP), 2012 IEEE Symposium on. :95-109.

The popularity and adoption of smart phones has greatly stimulated the spread of mobile malware, especially on the popular platforms such as Android. In light of their rapid growth, there is a pressing need to develop effective solutions. However, our defense capability is largely constrained by the limited understanding of these emerging mobile malware and the lack of timely access to related samples. In this paper, we focus on the Android platform and aim to systematize or characterize existing Android malware. Particularly, with more than one year effort, we have managed to collect more than 1,200 malware samples that cover the majority of existing Android malware families, ranging from their debut in August 2010 to recent ones in October 2011. In addition, we systematically characterize them from various aspects, including their installation methods, activation mechanisms as well as the nature of carried malicious payloads. The characterization and a subsequent evolution-based study of representative families reveal that they are evolving rapidly to circumvent the detection from existing mobile anti-virus software. Based on the evaluation with four representative mobile security software, our experiments show that the best case detects 79.6% of them while the worst case detects only 20.2% in our dataset. These results clearly call for the need to better develop next-generation anti-mobile-malware solutions.

Dyer, K.P., Coull, S.E., Ristenpart, T., Shrimpton, T..  2012.  Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures Fail. Security and Privacy (SP), 2012 IEEE Symposium on. :332-346.

We consider the setting of HTTP traffic over encrypted tunnels, as used to conceal the identity of websites visited by a user. It is well known that traffic analysis (TA) attacks can accurately identify the website a user visits despite the use of encryption, and previous work has looked at specific attack/countermeasure pairings. We provide the first comprehensive analysis of general-purpose TA countermeasures. We show that nine known countermeasures are vulnerable to simple attacks that exploit coarse features of traffic (e.g., total time and bandwidth). The considered countermeasures include ones like those standardized by TLS, SSH, and IPsec, and even more complex ones like the traffic morphing scheme of Wright et al. As just one of our results, we show that despite the use of traffic morphing, one can use only total upstream and downstream bandwidth to identify – with 98% accuracy - which of two websites was visited. One implication of what we find is that, in the context of website identification, it is unlikely that bandwidth-efficient, general-purpose TA countermeasures can ever provide the type of security targeted in prior work.

Rossow, C., Dietrich, C.J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., Bos, H., van Steen, M..  2012.  Prudent Practices for Designing Malware Experiments: Status Quo and Outlook. Security and Privacy (SP), 2012 IEEE Symposium on. :65-79.

Malware researchers rely on the observation of malicious code in execution to collect datasets for a wide array of experiments, including generation of detection models, study of longitudinal behavior, and validation of prior research. For such research to reflect prudent science, the work needs to address a number of concerns relating to the correct and representative use of the datasets, presentation of methodology in a fashion sufficiently transparent to enable reproducibility, and due consideration of the need not to harm others. In this paper we study the methodological rigor and prudence in 36 academic publications from 2006-2011 that rely on malware execution. 40% of these papers appeared in the 6 highest-ranked academic security conferences. We find frequent shortcomings, including problematic assumptions regarding the use of execution-driven datasets (25% of the papers), absence of description of security precautions taken during experiments (71% of the articles), and oftentimes insufficient description of the experimental setup. Deficiencies occur in top-tier venues and elsewhere alike, highlighting a need for the community to improve its handling of malware datasets. In the hope of aiding authors, reviewers, and readers, we frame guidelines regarding transparency, realism, correctness, and safety for collecting and using malware datasets.

Howe, AE., Ray, I, Roberts, M., Urbanska, M., Byrne, Z..  2012.  The Psychology of Security for the Home Computer User. Security and Privacy (SP), 2012 IEEE Symposium on. :209-223.

The home computer user is often said to be the weakest link in computer security. They do not always follow security advice, and they take actions, as in phishing, that compromise themselves. In general, we do not understand why users do not always behave safely, which would seem to be in their best interest. This paper reviews the literature of surveys and studies of factors that influence security decisions for home computer users. We organize the review in four sections: understanding of threats, perceptions of risky behavior, efforts to avoid security breaches and attitudes to security interventions. We find that these studies reveal a lot of reasons why current security measures may not match the needs or abilities of home computer users and suggest future work needed to inform how security is delivered to this user group.

Mayer, J.R., Mitchell, J.C..  2012.  Third-Party Web Tracking: Policy and Technology. Security and Privacy (SP), 2012 IEEE Symposium on. :413-427.

In the early days of the web, content was designed and hosted by a single person, group, or organization. No longer. Webpages are increasingly composed of content from myriad unrelated "third-party" websites in the business of advertising, analytics, social networking, and more. Third-party services have tremendous value: they support free content and facilitate web innovation. But third-party services come at a privacy cost: researchers, civil society organizations, and policymakers have increasingly called attention to how third parties can track a user's browsing activities across websites. This paper surveys the current policy debate surrounding third-party web tracking and explains the relevant technology. It also presents the FourthParty web measurement platform and studies we have conducted with it. Our aim is to inform researchers with essential background and tools for contributing to public understanding and policy debates about web tracking.

2014-09-17
Chasaki, D., Wolf, T..  2012.  Attacks and Defenses in the Data Plane of Networks. Dependable and Secure Computing, IEEE Transactions on. 9:798-810.

Security issues in computer networks have focused on attacks on end systems and the control plane. An entirely new class of emerging network attacks aims at the data plane of the network. Data plane forwarding in network routers has traditionally been implemented with custom-logic hardware, but recent router designs increasingly use software-programmable network processors for packet forwarding. These general-purpose processing devices exhibit software vulnerabilities and are susceptible to attacks. We demonstrate-to our knowledge the first-practical attack that exploits a vulnerability in packet processing software to launch a devastating denial-of-service attack from within the network infrastructure. This attack uses only a single attack packet to consume the full link bandwidth of the router's outgoing link. We also present a hardware-based defense mechanism that can detect situations where malicious packets try to change the operation of the network processor. Using a hardware monitor, our NetFPGA-based prototype system checks every instruction executed by the network processor and can detect deviations from correct processing within four clock cycles. A recovery system can restore the network processor to a safe state within six cycles. This high-speed detection and recovery system can ensure that network processors can be protected effectively and efficiently from this new class of attacks.

2021-04-08
Yaseen, Q., Panda, B..  2012.  Tackling Insider Threat in Cloud Relational Databases. 2012 IEEE Fifth International Conference on Utility and Cloud Computing. :215—218.
Cloud security is one of the major issues that worry individuals and organizations about cloud computing. Therefore, defending cloud systems against attacks such asinsiders' attacks has become a key demand. This paper investigates insider threat in cloud relational database systems(cloud RDMS). It discusses some vulnerabilities in cloud computing structures that may enable insiders to launch attacks, and shows how load balancing across multiple availability zones may facilitate insider threat. To prevent such a threat, the paper suggests three models, which are Peer-to-Peer model, Centralized model and Mobile-Knowledgebase model, and addresses the conditions under which they work well.
2020-08-28
Brinkman, Bo.  2012.  Willing to be fooled: Security and autoamputation in augmented reality. 2012 IEEE International Symposium on Mixed and Augmented Reality - Arts, Media, and Humanities (ISMAR-AMH). :89—90.

What does it mean to trust, or not trust, an augmented reality system? Froma computer security point of view, trust in augmented reality represents a real threat to real people. The fact that augmented reality allows the programmer to tinker with the user's senses creates many opportunities for malfeasance. It might be natural to think that if we warn users to be careful it will lower their trust in the system, greatly reducing risk.

2018-05-23
B. G. Kim, L. T. X. Phan, I. Lee, O. Sokolsky.  2012.  A model-based I/O interface synthesis framework for the cross-platform software modeling. 2012 23rd IEEE International Symposium on Rapid System Prototyping (RSP). :16-22.
2018-05-17
Gallagher, John C., Oppenheimer, Michael W..  2012.  An Improved Evolvable Oscillator and Basis Function Set for Control of an Insect-Scale Flapping-Wing Micro Air Vehicle. Journal of Computer Science and Technology. 27:966–978.

This paper introduces an improved evolvable and adaptive hardware oscillator design capable of supporting adaptation intended to restore control precision in damaged or imperfectly manufactured insect-scale flapping-wing micro air vehicles. It will also present preliminary experimental results demonstrating that previously used basis function sets may have been too large and that significantly improved learning times may be achieved by judiciously culling the oscillator search space. The paper will conclude with a discussion of the application of this adaptive, evolvable oscillator to full vehicle control as well as the consideration of longer term goals and requirements.

2014-10-24
Slavin, R., Hui Shen, Jianwei Niu.  2012.  Characterizations and boundaries of security requirements patterns. Requirements Patterns (RePa), 2012 IEEE Second International Workshop on. :48-53.

Very often in the software development life cycle, security is applied too late or important security aspects are overlooked. Although the use of security patterns is gaining popularity, the current state of security requirements patterns is such that there is not much in terms of a defining structure. To address this issue, we are working towards defining the important characteristics as well as the boundaries for security requirements patterns in order to make them more effective. By examining an existing general pattern format that describes how security patterns should be structured and comparing it to existing security requirements patterns, we are deriving characterizations and boundaries for security requirements patterns. From these attributes, we propose a defining format. We hope that these can reduce user effort in elicitation and specification of security requirements patterns.

Breaux, T.D., Hibshi, H., Rao, A, Lehker, J..  2012.  Towards a framework for pattern experimentation: Understanding empirical validity in requirements engineering patterns. Requirements Patterns (RePa), 2012 IEEE Second International Workshop on. :41-47.

Despite the abundance of information security guidelines, system developers have difficulties implementing technical solutions that are reasonably secure. Security patterns are one possible solution to help developers reuse security knowledge. The challenge is that it takes experts to develop security patterns. To address this challenge, we need a framework to identify and assess patterns and pattern application practices that are accessible to non-experts. In this paper, we narrowly define what we mean by patterns by focusing on requirements patterns and the considerations that may inform how we identify and validate patterns for knowledge reuse. We motivate this discussion using examples from the requirements pattern literature and theory in cognitive psychology.

2022-04-21
Kriz, Danielle.  2011.  Cybersecurity principles for industry and government: A useful framework for efforts globally to improve cybersecurity. 2011 Second Worldwide Cybersecurity Summit (WCS). :1–3.
To better inform the public cybersecurity discussion, in January 2011 the Information Technology Industry Council (ITI) developed a comprehensive set of cybersecurity principles for industry and government [1]. ITI's six principles aim to provide a useful and important lens through which any efforts to improve cybersecurity should be viewed.