Biblio
Secure information flow guarantees the secrecy and integrity of data, preventing an attacker from learning secret information (secrecy) or injecting untrusted information (integrity). Covert channels can be used to subvert these security guarantees, for example, timing and termination channels can, either intentionally or inadvertently, violate these guarantees by modifying the timing or termination behavior of a program based on secret or untrusted data. Attacks using these covert channels have been published and are known to work in practiceâ as techniques to prevent non-covert channels are becoming increasingly practical, covert channels are likely to become even more attractive for attackers to exploit. The goal of this paper is to understand the subtleties of timing and termination-sensitive noninterference, explore the space of possible strategies for enforcing noninterference guarantees, and formalize the exact guarantees that these strategies can enforce. As a result of this effort we create a novel strategy that provides stronger security guarantees than existing work, and we clarify claims in existing work about what guarantees can be made.
Computational soundness results show that under certain conditions it is possible to conclude computational security whenever symbolic security holds. Unfortunately, each soundness result is usually established for some set of cryptographic primitives and extending the result to encompass new primitives typically requires redoing most of the work. In this paper we suggest a way of getting around this problem. We propose a notion of computational soundness that we term deduction soundness. As for other soundness notions, our definition captures the idea that a computational adversary does not have any more power than a symbolic adversary. However, a key aspect of deduction soundness is that it considers, intrinsically, the use of the primitives in the presence of functions specified by the adversary. As a consequence, the resulting notion is amenable to modular extensions. We prove that a deduction sound implementation of some arbitrary primitives can be extended to include asymmetric encryption and public data-structures (e.g. pairings or list), without repeating the original proof effort. Furthermore, our notion of soundness concerns cryptographic primitives in a way that is independent of any protocol specification language. Nonetheless, we show that deduction soundness leads to computational soundness for languages (or protocols) that satisfy a so called commutation property.
We introduce noncooperatively optimized tolerance (NOT), a game theoretic generalization of highly optimized tolerance (HOT), which we illustrate in the forest fire framework. As the number of players increases, NOT retains features of HOT, such as robustness and self-dissimilar landscapes, but also develops features of self-organized criticality. The system retains considerable robustness even as it becomes fractured, due in part to emergent cooperation between players, and at the same time exhibits increasing resilience against changes in the environment, giving rise to intermediate regimes where the system is robust to a particular distribution of adverse events, yet not very fragile to changes.
Cyber SA is described as the current and predictive knowledge of cyberspace in relation to the Network, Missions and Threats across friendly, neutral and adversary forces. While this model provides a good high-level understanding of Cyber SA, it does not contain actionable information to help inform the development of capabilities to improve SA. In this paper, we present a systematic, human-centered process that uses a card sort methodology to understand and conceptualize Senior Leader Cyber SA requirements. From the data collected, we were able to build a hierarchy of high- and low- priority Cyber SA information, as well as uncover items that represent high levels of disagreement with and across organizations. The findings of this study serve as a first step in developing a better understanding of what Cyber SA means to Senior Leaders, and can inform the development of future capabilities to improve their SA and Mission Performance.
Current post-mortem cyber-forensic techniques may cause significant disruption to the evidence gathering process by breaking active network connections and unmounting encrypted disks. Although newer live forensic analysis tools can preserve active state, they may taint evidence by leaving footprints in memory. To help address these concerns we present Forenscope, a framework that allows an investigator to examine the state of an active system without the effects of taint or forensic blurriness caused by analyzing a running system. We show how Forenscope can fit into accepted workflows to improve the evidence gathering process. Forenscope preserves the state of the running system and allows running processes, open files, encrypted filesystems and open network sockets to persist during the analysis process. Forenscope has been tested on live systems to show that it does not operationally disrupt critical processes and that it can perform an analysis in less than 15 seconds while using only 125 KB of memory. We show that Forenscope can detect stealth rootkits, neutralize threats and expedite the investigation process by finding evidence in memory.