Automotive CPS Workshop

file

Visible to the public Using Multicore Architectures in Cyber-Physical Systems

The demand for higher performance computing platforms has dramatically increased during the last decade due to the continuous feature enhancement process. For instance, in automotive systems new safety features like `night view assist’ and `automatic emergency breaking’ require the fusion of sensor data, video processing and real-time warnings when an obstacle is detected on the road; in the avionics domain new applications such as the helmet-mounted display systems require intensive video processing capabilities.

file

Visible to the public Design Automation Challenges in Automotive CPS

In principle, best-effort technologies can be used for building each individual automotive cyber-physical system (CPS) from the ground-up, through careful design, testing, and verification. Each such undertaking, however, is technically challenging, error-prone, and expensive. Since many of these systems share common challenges, employ common design patterns, and verification principles, it is expected that generic software tools for automating design, testing, and verification can alleviate these challenges.

file

Visible to the public Bridging Aero and Auto CPS: Secure Software and Data Distribution

Transportation sectors are today faced with grand societal challenges of accommodating an unprecedented traffic increase, while improving travel safety, comfort and convenience, fuel efficiency, environmental benefit, and stakeholders business. Commonalities are emerging in the way aerospace and automotive sectors are responding to these grand challenges.

file

Visible to the public Holistic Data-Driven Diagnosis for Dependable Automotive Systems

Despite extensive design processes, emergent behavior will still appear at run-time in dependable automotive systems. Such behavior occurs due to unexpected or unidentifieded interactions and dependencies between system components. These interactions are unidentifieded due to a disconnect between various stages of the design process. A diagnostic advisor that synthesizes data from each stage of the product lifecycle provide a more accurate design-time characterization of the system, as well as more robust run-time operation.

file

Visible to the public Closing the loop between traffic/pollution sensing and vehicle route control

The Vision: Our planet has become more urban than rural in the last decade. Urban traffic has increased dramatically, making driving more stressful, costly, and unhealthy. According to the Texas Transportation Institute, the overall cost of metropolitan traffic congestion (in terms of wasted fuel and lost economic productivity) in the U.S. topped $87 billion in 2007, more than $750/year for every U.S. traveler.

file

Visible to the public Towards Automotive Software Health Management (SHM)*

Integrated Vehicle Health Management (IVHM) covers frameworks for detecting, diagnosing, and mitigating faults in hardware and structures in aerospace systems. Software Health Management (SHM) applies the goals of IVHM to software-intensive systems to detect software faults in real-time and to mitigate them. In this position paper, we describe the needs and challenges of SHM in automotive systems.