Visible to the public Biblio

Filters: Keyword is Resilient Systems  [Clear All Filters]
2016-04-11
Lina Sela Perelman, Waseem Abbas, Xenofon D. Koutsoukos, Saurabh Amin.  2015.  Sensor placement for fault location identification in water networks: A minimum test cover approach. CoRR. abs/1507.07134

This paper focuses on the optimal sensor placement problem for the identification of pipe failure locations in large-scale urban water systems. The problem involves selecting the minimum number of sensors such that every pipe failure can be uniquely localized. This problem can be viewed as a minimum test cover (MTC) problem, which is NP-hard. We consider two approaches to obtain approximate solutions to this problem. In the first approach, we transform the MTC problem to a minimum set cover (MSC) problem and use the greedy algorithm that exploits the submodularity property of the MSC problem to compute the solution to the MTC problem. In the second approach, we develop a new \textit{augmented greedy} algorithm for solving the MTC problem. This approach does not require the transformation of the MTC to MSC. Our augmented greedy algorithm provides in a significant computational improvement while guaranteeing the same approximation ratio as the first approach. We propose several metrics to evaluate the performance of the sensor placement designs. Finally, we present detailed computational experiments for a number of real water distribution networks.

Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bachwani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu et al..  2015.  Back to the Future: Malware Detection with Temporally Consistent Labels. CoRR. abs/1510.07338

The malware detection arms race involves constant change: malware changes to evade detection and labels change as detection mechanisms react. Recognizing that malware changes over time, prior work has enforced temporally consistent samples by requiring that training binaries predate evaluation binaries. We present temporally consistent labels, requiring that training labels also predate evaluation binaries since training labels collected after evaluation binaries constitute label knowledge from the future. Using a dataset containing 1.1 million binaries from over 2.5 years, we show that enforcing temporal label consistency decreases detection from 91% to 72% at a 0.5% false positive rate compared to temporal samples alone.

The impact of temporal labeling demonstrates the potential of improved labels to increase detection results. Hence, we present a detector capable of selecting binaries for submission to an expert labeler for review. At a 0.5% false positive rate, our detector achieves a 72% true positive rate without an expert, which increases to 77% and 89% with 10 and 80 expert queries daily, respectively. Additionally, we detect 42% of malicious binaries initially undetected by all 32 antivirus vendors from VirusTotal used in our evaluation. For evaluation at scale, we simulate the human expert labeler and show that our approach is robust against expert labeling errors. Our novel contributions include a scalable malware detector integrating manual review with machine learning and the examination of temporal label consistency

2016-04-08
Dahan, Mathieu, Amin, Saurabh.  2015.  Network Flow Routing under Strategic Link Disruptions. arXiv preprint arXiv:1512.09335.

This paper considers a 2-player strategic game for network routing under link disruptions. Player 1 (defender) routes flow through a network to maximize her value of effective flow while facing transportation costs. Player 2 (attacker) simultaneously disrupts one or more links to maximize her value of lost flow but also faces cost of disrupting links. This game is strategically equivalent to a zero-sum game. Linear programming duality and the max-flow min-cut theorem are applied to obtain properties that are satisfied in any mixed Nash equilibrium. In any equilibrium, both players achieve identical payoffs. While the defender's expected transportation cost decreases in attacker's marginal value of lost flow, the attacker's expected cost of attack increases in defender's marginal value of effective flow. Interestingly, the expected amount of effective flow decreases in both these parameters. These results can be viewed as a generalization of the classical max-flow with minimum transportation cost problem to adversarial environments.

Abbas, Waseem, Laszka, Aron, Vorobeychik, Yevgeniy, Koutsoukos, Xenofon.  2015.  Scheduling Intrusion Detection Systems in Resource-Bounded Cyber-Physical Systems. Proceedings of the First ACM Workshop on Cyber-Physical Systems-Security and/or PrivaCy. :55–66.

In order to be resilient to attacks, a cyber-physical system (CPS) must be able to detect attacks before they can cause significant damage. To achieve this, \emph{intrusion detection systems} (IDS) may be deployed, which can detect attacks and alert human operators, who can then intervene. However, the resource-constrained nature of many CPS poses a challenge, since reliable IDS can be computationally expensive. Consequently, computational nodes may not be able to perform intrusion detection continuously, which means that we have to devise a schedule for performing intrusion detection. While a uniformly random schedule may be optimal in a purely cyber system, an optimal schedule for protecting CPS must also take into account the physical properties of the system, since the set of adversarial actions and their consequences depend on the physical systems. Here, in the context of water distribution networks, we study IDS scheduling problems in two settings and under the constraints on the available battery supplies. In the first problem, the objective is to design, for a given duration of time $T$, scheduling schemes for IDS so that the probability of detecting an attack is maximized within that duration. We propose efficient heuristic algorithms for this general problem and evaluate them on various networks. In the second problem, our objective is to design scheduling schemes for IDS so that the overall lifetime of the network is maximized while ensuring that an intruder attack is always detected. Various strategies to deal with this problem are presented and evaluated for various networks.

2016-04-07
Ke, Liyiming, Li, Bo, Vorobeychik, Yevgeniy.  2016.  Behavioral Experiments in Email Filter Evasion.

Despite decades of effort to combat spam, unwanted and even malicious emails, such as phish which aim to deceive recipients into disclosing sensitive information, still routinely find their way into one’s mailbox. To be sure, email filters manage to stop a large fraction of spam emails from ever reaching users, but spammers and phishers have mastered the art of filter evasion, or manipulating the content of email messages to avoid being filtered. We present a unique behavioral experiment designed to study email filter evasion. Our experiment is framed in somewhat broader terms: given the widespread use of machine learning methods for distinguishing spam and non-spam, we investigate how human subjects manipulate a spam template to evade a classification-based filter. We find that adding a small amount of noise to a filter significantly reduces the ability of subjects to evade it, observing that noise does not merely have a short-term impact, but also degrades evasion performance in the longer term. Moreover, we find that greater coverage of an email template by the classifier (filter) features significantly increases the difficulty of evading it. This observation suggests that aggressive feature reduction—a common practice in applied machine learning—can actually facilitate evasion. In addition to the descriptive analysis of behavior, we develop a synthetic model of human evasion behavior which closely matches observed behavior and effectively replicates experimental findings in simulation.

Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2015.  Resilient Observation Selection in Adversarial Settings. 54th IEEE Conference on Decision and Control (CDC).

Monitoring large areas using sensors is fundamental in a number of applications, including electric power grid, traffic networks, and sensor-based pollution control systems. However, the number of sensors that can be deployed is often limited by financial or technological constraints. This problem is further complicated by the presence of strategic adversaries, who may disable some of the deployed sensors in order to impair the operator's ability to make predictions. Assuming that the operator employs a Gaussian-process-based regression model, we formulate the problem of attack-resilient sensor placement as the problem of selecting a subset from a set of possible observations, with the goal of minimizing the uncertainty of predictions. We show that both finding an optimal resilient subset and finding an optimal attack against a given subset are NP-hard problems. Since both the design and the attack problems are computationally complex, we propose efficient heuristic algorithms for solving them and present theoretical approximability results. Finally, we show that the proposed algorithms perform exceptionally well in practice using numerical results based on real-world datasets.

Goncalo Martins, Sajal Bhatia, Xenofon Kousoukos, Keith Stouffer, CheeYee Tang, Richard Candell.  2015.  Towards a Systematic Threat Modeling Approach for Cyber-physical Systems. 2nd National Symposium on Resilient Critical Infrastructure (ISRCS 2015).

Cyber-Physical Systems (CPS) are systems with seamless integration of physical, computational and networking components. These systems can potentially have an impact on the physical components, hence it is critical to safeguard them against a wide range of attacks. In this paper, it is argued that an effective approach to achieve this goal is to systematically identify the potential threats at the design phase of building such systems, commonly achieved via threat modeling. In this context, a tool to perform systematic analysis of threat modeling for CPS is proposed. A real-world wireless railway temperature monitoring system is used as a case study to validate the proposed approach. The threats identified in the system are subsequently mitigated using National Institute of Standards and Technology (NIST) standards.

Laszka, Aron, Vorobeychik, Yevgeniy, Koutsoukos, Xenofon.  2015.  Optimal Personalized Filtering Against Spear-phishing Attacks. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. :958–964.

To penetrate sensitive computer networks, attackers can use spear phishing to sidestep technical security mechanisms by exploiting the privileges of careless users. In order to maximize their success probability, attackers have to target the users that constitute the weakest links of the system. The optimal selection of these target users takes into account both the damage that can be caused by a user and the probability of a malicious e-mail being delivered to and opened by a user. Since attackers select their targets in a strategic way, the optimal mitigation of these attacks requires the defender to also personalize the e-mail filters by taking into account the users' properties.

In this paper, we assume that a learned classifier is given and propose strategic per-user filtering thresholds for mitigating spear-phishing attacks. We formulate the problem of filtering targeted and non-targeted malicious e-mails as a Stackelberg security game. We characterize the optimal filtering strategies and show how to compute them in practice. Finally, we evaluate our results using two real-world datasets and demonstrate that the proposed thresholds lead to lower losses than nonstrategic thresholds.

Gan, Jiarui, An, Bo, Vorobeychik, Yevgeniy.  2015.  Security Games with Protection Externalities. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. :914–920.

Stackelberg security games have been widely deployed in recent years to schedule security resources. An assumption in most existing security game models is that one security resource assigned to a target only protects that target. However, in many important real-world security scenarios, when a resource is assigned to a target, it exhibits protection externalities: that is, it also protects other "neighbouring" targets. We investigate such Security Games with Protection Externalities (SPEs). First, we demonstrate that computing a strong Stackelberg equilibrium for an SPE is NP-hard, in contrast with traditional Stackelberg security games which can be solved in polynomial time. On the positive side, we propose a novel column generation based approach—CLASPE—to solve SPEs. CLASPE features the following novelties: 1) a novel mixed-integer linear programming formulation for the slave problem; 2) an extended greedy approach with a constant-factor approximation ratio to speed up the slave problem; and 3) a linear-scale linear programming that efficiently calculates the upper bounds of target-defined subproblems for pruning. Our experimental evaluation demonstrates that CLASPE enable us to scale to realistic-sized SPE problem instances.

2015-11-12
Laszka, Aron, Vorobeychik, Yevgeniy, Koutsoukos, Xenofon.  2015.  Integrity Assurance in Resource-bounded Systems Through Stochastic Message Authentication. Proceedings of the 2015 Symposium and Bootcamp on the Science of Security. :1:1–1:12.

Assuring communication integrity is a central problem in security. However, overhead costs associated with cryptographic primitives used towards this end introduce significant practical implementation challenges for resource-bounded systems, such as cyber-physical systems. For example, many control systems are built on legacy components which are computationally limited but have strict timing constraints. If integrity protection is a binary decision, it may simply be infeasible to introduce into such systems; without it, however, an adversary can forge malicious messages, which can cause signi cant physical or financial harm. We propose a formal game-theoretic framework for optimal stochastic message authentication, providing provable integrity guarantees for resource-bounded systems based on an existing MAC scheme. We use our framework to investigate attacker deterrence, as well as optimal design of stochastic message authentication schemes when deterrence is impossible. Finally, we provide experimental results on the computational performance of our framework in practice.

Li, Bo, Vorobeychik, Yevgeniy, Li, Muqun, Malin, Bradley.  2015.  Iterative Classification for Sanitizing Large-Scale Datasets. SIAM International Conference on Data Mining.

Cheap ubiquitous computing enables the collectionof massive amounts of personal data in a wide variety of domains.Many organizations aim to share such data while obscuring fea-tures that could disclose identities or other sensitive information.Much of the data now collected exhibits weak structure (e.g.,natural language text) and machine learning approaches havebeen developed to identify and remove sensitive entities in suchdata. Learning-based approaches are never perfect and relyingupon them to sanitize data can leak sensitive information as aconsequence. However, a small amount of risk is permissiblein practice, and, thus, our goal is to balance the value ofdata published and the risk of an adversary discovering leakedsensitive information. We model data sanitization as a gamebetween 1) a publisher who chooses a set of classifiers to applyto data and publishes only instances predicted to be non-sensitiveand 2) an attacker who combines machine learning and manualinspection to uncover leaked sensitive entities (e.g., personal names). We introduce an iterative greedy algorithm for thepublisher that provably executes no more than a linear numberof iterations, and ensures a low utility for a resource-limitedadversary. Moreover, using several real world natural languagecorpora, we illustrate that our greedy algorithm leaves virtuallyno automatically identifiable sensitive instances for a state-of-the-art learning algorithm, while sharing over 93% of the original data, and completes after at most 5 iterations.

Nika Haghtalab, Aron Laszka, Ariel D. Procaccia, Yevgeniy Vorobeychik, Xenofon D. Koutsoukos.  2015.  Monitoring Stealthy Diffusion. SIAM International Conference on Data Mining.

Starting with the seminal work by Kempe et al., a broad variety of problems, such as targeted marketing and the spread of viruses and malware, have been modeled as selecting
a subset of nodes to maximize diffusion through a network. In
cyber-security applications, however, a key consideration largely ignored in this literature is stealth. In particular, an attacker often has a specific target in mind, but succeeds only if the target is reached (e.g., by malware) before the malicious payload is detected and corresponding countermeasures deployed. The dual side of this problem is deployment of a limited number of monitoring units, such as cyber-forensics specialists, so as to limit the likelihood of such targeted and stealthy diffusion processes reaching their intended targets. We investigate the problem of optimal monitoring of targeted stealthy diffusion processes, and show that a number of natural variants of this problem are NP-hard to approximate. On the positive side, we show that if stealthy diffusion starts from randomly selected nodes, the defender’s objective is submodular, and a fast greedy algorithm has provable approximation guarantees. In addition, we present approximation algorithms for the setting in which an attacker optimally responds to the placement of monitoring nodes by adaptively selecting the starting nodes for the diffusion process. Our experimental results show that the proposed algorithms are highly effective and scalable.
 

Xia, Weiyi, Kantarcioglu, Murat, Wan, Zhiyu, Heatherly, Raymond, Vorobeychik, Yevgeniy, Malin, Bradley.  2015.  Process-Driven Data Privacy. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. :1021–1030.

The quantity of personal data gathered by service providers via our daily activities continues to grow at a rapid pace. The sharing, and the subsequent analysis of, such data can support a wide range of activities, but concerns around privacy often prompt an organization to transform the data to meet certain protection models (e.g., k-anonymity or E-differential privacy). These models, however, are based on simplistic adversarial frameworks, which can lead to both under- and over-protection. For instance, such models often assume that an adversary attacks a protected record exactly once. We introduce a principled approach to explicitly model the attack process as a series of steps. Specically, we engineer a factored Markov decision process (FMDP) to optimally plan an attack from the adversary's perspective and assess the privacy risk accordingly. The FMDP captures the uncertainty in the adversary's belief (e.g., the number of identied individuals that match the de-identified data) and enables the analysis of various real world deterrence mechanisms beyond a traditional protection model, such as a penalty for committing an attack. We present an algorithm to solve the FMDP and illustrate its efficiency by simulating an attack on publicly accessible U.S. census records against a real identied resource of over 500,000 individuals in a voter registry. Our results demonstrate that while traditional privacy models commonly expect an adversary to attack exactly once per record, an optimal attack in our model may involve exploiting none, one, or more indiviuals in the pool of candidates, depending on context.

Lou, Jian, Vorobeychik, Yevgeniy.  2015.  Equilibrium analysis of multi-defender security games. Proceedings of the 24th International Conference on Artificial Intelligence. :596–602.

Stackelberg game models of security have received much attention, with a number of approaches for
computing Stackelberg equilibria in games with a single defender protecting a collection of targets. In contrast, multi-defender security games have received significantly less attention, particularly when each defender protects more than a single target. We fill this gap by considering a multi-defender security game, with a focus on theoretical characterizations of equilibria and the price of anarchy. We present the analysis of three models of increasing generality, two in which each defender protects multiple targets. In all models, we find that the defenders often have the incentive to over protect the targets, at times significantly. Additionally, in the simpler models, we find that the price of anarchy is unbounded, linearly increasing both in the number of defenders and the number of targets per defender. Surprisingly, when we consider a more general model, this results obtains only in a “corner” case in the space of parameters; in most cases, however, the price of anarchy converges to a constant when the number of defenders increases.

Krichene, Walid, Balandat, Maximilian, Tomlin, Claire, Bayen, Alexandre.  2015.  The Hedge Algorithm on a Continuum. Proceedings of the 32nd International Conference on Machine Learning (ICML-15). :824-832.

ABSTRACT: We consider an onlinse optimization problem on a compact subset S ⊂ Rn (not necessarily convex), in which a decision maker chooses, at each iteration t, a probability distribution xover S, and seeks to minimize a cumulative expected loss, , where ℓ(t) is a Lipschitz loss function revealed at the end of iteration t. Building on previous work, we propose a generalized Hedge algorithm and show a  bound on the regret when the losses are uniformly Lipschitz and S is uniformly fat (a weaker condition than convexity). Finally, we propose a generalization to the dual averaging method on the set of Lebesgue-continuous distributions over S.

2015-11-11
Kantchelian, Alex, Tschantz, Michael Carl, Afroz, Sadia, Miller, Brad, Shankar, Vaishaal, Bachwani, Rekha, Joseph, Anthony D., Tygar, J. D..  2015.  Better Malware Ground Truth: Techniques for Weighting Anti-Virus Vendor Labels. Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security. :45–56.

We examine the problem of aggregating the results of multiple anti-virus (AV) vendors' detectors into a single authoritative ground-truth label for every binary. To do so, we adapt a well-known generative Bayesian model that postulates the existence of a hidden ground truth upon which the AV labels depend. We use training based on Expectation Maximization for this fully unsupervised technique. We evaluate our method using 279,327 distinct binaries from VirusTotal, each of which appeared for the rst time between January 2012 and June 2014.

Our evaluation shows that our statistical model is consistently more accurate at predicting the future-derived ground truth than all unweighted rules of the form \k out of n" AV detections. In addition, we evaluate the scenario where partial ground truth is available for model building. We train a logistic regression predictor on the partial label information. Our results show that as few as a 100 randomly selected training instances with ground truth are enough to achieve 80% true positive rate for 0.1% false positive rate. In comparison, the best unweighted threshold rule provides only 60% true positive rate at the same false positive rate.

Roy Dong.  2015.  Differential Privacy of Populations in Routing Games.

As our ground transportation infrastructure modernizes, the large amount of data being measured, transmitted, and stored motivates an analysis of the privacy aspect of these emerging cyber-physical technologies. In this paper, we consider privacy in the routing game, where the origins and destinations of drivers are considered private. This is motivated by the fact that this spatiotemporal information can easily be used as the basis for inferences for a person's activities. More specifically, we consider the differential privacy of the mapping from the amount of flow for each origin-destination pair to the traffic flow measurements on each link of a traffic network. We use a stochastic online learning framework for the population dynamics, which is known to converge to the Nash equilibrium of the routing game. We analyze the sensitivity of this process and provide theoretical guarantees on the convergence rates as well as differential privacy values for these models. We confirm these with simulations on a small example.

2015-03-03
Li, Bo, Vorobeychik, Yevgeniy.  2014.  Feature Cross-Substitution in Adversarial Classification. Advances in Neural Information Processing Systems 27. :2087–2095.

The success of machine learning, particularly in supervised settings, has led to numerous attempts to apply it in adversarial settings such as spam and malware detection. The core challenge in this class of applications is that adversaries are not static data generators, but make a deliberate effort to evade the classifiers deployed to detect them. We investigate both the problem of modeling the objectives of such adversaries, as well as the algorithmic problem of accounting for rational, objective-driven adversaries. In particular, we demonstrate severe shortcomings of feature reduction in adversarial settings using several natural adversarial objective functions, an observation that is particularly pronounced when the adversary is able to substitute across similar features (for example, replace words with synonyms or replace letters in words). We offer a simple heuristic method for making learning more robust to feature cross-substitution attacks. We then present a more general approach based on mixed-integer linear programming with constraint generation, which implicitly trades off overfitting and feature selection in an adversarial setting using a sparse regularizer along with an evasion model. Our approach is the first method for combining an adversarial classification algorithm with a very general class of models of adversarial classifier evasion. We show that our algorithmic approach significantly outperforms state-of-the-art alternatives.

Smith, Andrew, Vorobeychik, Yevgeniy, Letchford, Joshua.  2014.  Multi-Defender Security Games on Networks. SIGMETRICS Perform. Eval. Rev.. 41:4–7.

Stackelberg security game models and associated computational tools have seen deployment in a number of high- consequence security settings, such as LAX canine patrols and Federal Air Marshal Service. This deployment across essentially independent agencies raises a natural question: what global impact does the resulting strategic interaction among the defenders, each using a similar model, have? We address this question in two ways. First, we demonstrate that the most common solution concept of Strong Stackelberg equilibrium (SSE) can result in significant under-investment in security entirely because SSE presupposes a single defender. Second, we propose a framework based on a different solution concept which incorporates a model of interdependencies among targets, and show that in this framework defenders tend to over-defend, even under significant positive externalities of increased defense.

Abbas, W., Koutsoukos, X..  2015.  Efficient Complete Coverage Through Heterogeneous Sensing Nodes. Wireless Communications Letters, IEEE. 4:14-17.

We investigate the coverage efficiency of a sensor network consisting of sensors with circular sensing footprints of different radii. The objective is to completely cover a region in an efficient manner through a controlled (or deterministic) deployment of such sensors. In particular, it is shown that when sensing nodes of two different radii are used for complete coverage, the coverage density is increased, and the sensing cost is significantly reduced as compared to the homogeneous case, in which all nodes have the same sensing radius. Configurations of heterogeneous disks of multiple radii to achieve efficient circle coverings are presented and analyzed.

2014-10-07
Neema, Himanshu, Nine, Harmon, Graham Hemingway, Sztipanovits, Janos, Karsai, Gabor.  2009.  Rapid Synthesis of Multi-Model Simulations for Computational Experiments in C2. Armed Forces Communications and Electronics Association - George Mason University Symposium.

Abstract-Virtual evaluation of complex command and control concepts demands the use of heterogeneous simulation environments. Development challenges include how to integrate multiple simulation platforms with varying semantics and how to integrate simulation models and the complex interactions between them. While existing simulation frameworks may provide many of the required services needed to coordinate among multiple simulation platforms, they lack an overarching integration approach that connects and relates the semantics of heterogeneous domain models and their interactions. This paper outlines some of the challenges encountered in developing a command and control simulation environment and discusses our use of the GME meta-modeling tool-suite to create a model-based integration approach that allows for rapid synthesis of complex HLA-based simulation environments.

The research was conducted by Institute for Software Integrated Systems at Vanderbilt University, in collaboration with George Mason University, University of California at Berkeley, and University of Arizona.

Maroti, Miklos, Kereskenyi, Robert, Tamas Kecskes, Volgyesi, Peter, Ledeczi, Akos.  2014.  Online Collaborative Environment for Designing Complex Computational Systems. The International Conference on Computational Science (ICCS 2014).

Developers of information systems have always utilized various visual formalisms during the design process, albeit in an informal manner. Architecture diagrams, finite state machines, and signal flow graphs are just a few examples. Model Integrated Computing (MIC) is an approach that considers these design artifacts as first class models and uses them to generate the system or subsystems automatically. Moreover, the same models can be used to analyze the system and generate test cases and documentation. MIC advocates the formal definition of these formalisms, called domain-specific modeling languages (DSML), via metamodeling and the automatic configuration of modeling tools from the metamodels. However, current MIC infrastructures are based on desktop applications that support a limited number of platforms, discourage concurrent design collaboration and are not scalable. This paper presents WebGME, a cloud- and web-based cyberinfrastructure to support the collaborative modeling, analysis, and synthesis of complex, large-scale scientific and engineering information systems. It facilitates interfacing with existing external tools, such as simulators and analysis tools, it provides custom domain-specific visualization support and enables the creation of automatic code generators.