Biblio
Workarounds to computer access in healthcare are sufficiently common that they often go unnoticed. Clinicians focus on patient care, not cybersecurity. We argue and demonstrate that understanding workarounds to healthcare workers’ computer access requires not only analyses of computer rules, but also interviews and observations with clinicians. In addition, we illustrate the value of shadowing clinicians and conducing focus groups to understand their motivations and tradeoffs for circumvention. Ethnographic investigation of the medical workplace emerges as a critical method of research because in the inevitable conflict between even well-intended people versus the machines, it’s the people who are the more creative, flexible, and motivated. We conducted interviews and observations with hundreds of medical workers and with 19 cybersecurity experts, CIOs, CMIOs, CTO, and IT workers to obtain their perceptions of computer security. We also shadowed clinicians as they worked. We present dozens of ways workers ingeniously circumvent security rules. The clinicians we studied were not “black hat” hackers, but just professionals seeking to accomplish their work despite the security technologies and regulations.
Workarounds to computer access in healthcare are sufficiently common that they often go unnoticed. Clinicians focus on patient care, not cybersecurity. We argue and demonstrate that understanding workarounds to healthcare workers’ computer access requires not only analyses of computer rules, but also interviews and observations with clinicians. In addition, we illustrate the value of shadowing clinicians and conducing focus groups to understand their motivations and tradeoffs for circumvention. Ethnographic investigation of the medical workplace emerges as a critical method of research because in the inevitable conflict between even well-intended people versus the machines, it’s the people who are the more creative, flexible, and motivated. We conducted interviews and observations with hundreds of medical workers and with 19 cybersecurity experts, CIOs, CMIOs, CTO, and IT workers to obtain their perceptions of computer security. We also shadowed clinicians as they worked. We present dozens of ways workers ingeniously circumvent security rules. The clinicians we studied were not “black hat” hackers, but just professionals seeking to accomplish their work despite the security technologies and regulations.
Abstract. Multi-agent cyber-physical systems (CPSs) are ubiquitous in modern infrastructure systems, including the future smart grid, transportation networks, and public health systems. Security of these systems are critical for normal operation of our society. In this paper, we focus on physical layer resilient control of these systems subject to cyber attacks and malicious behaviors of physical agents. We establish a cross-layer system model for the investigation of cross-layer coupling and performance interdependencies for CPSs. In addition, we study a twosystem synchronization problem in which one is a malicious agent who intends to mislead the entire system behavior through physical layer interactions. Feedback Nash equilibrium is used as the solution concept for the distributed control in the multi-agent system environment. We corroborate our results with numerical examples, which show the performance interdependencies between two CPSs through cyber and physical interactions.
We show that competitive engagements within the agents of a network can result in resilience in consensus dynamics with respect to the presence of an adversary. We first show that interconnections with an adversary, with linear dynamics, can make the consensus dynamics diverge, or drive its evolution to a state different from the average.We then introduce a second network, interconnected with the original network via an engagement topology. This network has no information about the adversary and each agent in it has only access to partial information about the state of the other network. We introduce a dynamics on the coupled network which corresponds to a saddle-point dynamics of a certain zero-sum game and is distributed over each network, as well as the engagement topology. We show that, by appropriately choosing a design parameter corresponding to the competition between these two networks, the coupled dynamics can be made resilient with respect to the presence of the adversary.Our technical approach combines notions of graph theory and stable perturbations of nonsymmetric matrices.We demonstrate our results on an example of kinematic-based flocking in presence of an adversary.
Consider a thin, flexible wire of fixed length that is held at each end by a robotic gripper. Any curve traced by this wire when in static equilibrium is a local solution to a geometric optimal control problem, with boundary conditions that vary with the position and orientation of each gripper. We prove that the set of all local solutions to this problem over all possible boundary conditions is a smooth manifold of finite dimension that can be parameterized by a single chart. We show that this chart makes it easy to implement a sampling-based algorithm for quasi-static manipulation planning. We characterize the performance of such an algorithm with experiments in simulation.
The smart grid is an ever-growing complex dynamic system with multiple interleaved layers and a large number of interacting components. In this talk, we discuss how game-theoretic tools can be used as an analytical tool to understand strategic interactions at different layers of the system and between different decision-making entities for distributed management of energy resources. We first investigate the issue of integration of renewable energy resources into the power grid. We establish a game-theoretic framework for modeling the strategic behavior of buses that are connected to renewable energy resources, and study the Nash equilibrium solution of distributed power generation at each bus. Our framework uses a cross-layer approach, taking into account the economic factors as well as system stability issues at the physical layer. In the second part of the talk, we discuss the issue of integration of plug-in electric vehicles (PHEVs) for vehicle-to-grid (V2G) transactions on the smart grid. Electric vehicles will be capable of buying and selling energy from smart parking lots in the future. We propose a multi-resolution and multi-layer stochastic differential game framework to study the dynamic decision-making process among PHEVs. We analyze the stochastic game in a large-population regime and account for the multiple types of interactions in the grid. Using these two settings, we demonstrate that game theory is a versatile tool to address many fundamental and emerging issues in the smart grid.
Presented at the Eighth Annual Carnegie Mellon Conference on the Electricity Industry Data-Driven Sustainable Engergy Systems in Pittsburgh, PA, March 12-14, 2012.
The static nature of computer networks allows malicious attackers to easily gather useful information about the network using network scanning and packet sniffing. The employment of secure perimeter firewalls and intrusion detection systems cannot fully protect the network from sophisticated attacks. As an alternative to the expensive and imperfect detection of attacks, it is possible to improve network security by manipulating the attack surface of the network in order to create a moving target defense. In this paper, we introduce a proactive defense scheme that dynamically alters the attack surface of the network to make it difficult for attackers to gather system information by increasing complexity and reducing its signatures. We use concepts from systems and control literature to design an optimal and efficient multi-stage defense mechanism based on a feedback information structure. The change of
attack surface involves a reconfiguration cost and a utility gain resulting from risk reduction. We use information- and control-theoretic tools to provide closed-form optimal randomization strategies. The results are corroborated by a case study and several numerical examples.
Healthcare professionals have unique motivations, goals, perceptions, training, tensions, and behaviors, which guide workflow and often lead to unprecedented workarounds that weaken the efficacy of security policies and mechanisms. Identifying and understanding these factors that contribute to circumvention, as well as the acts of circumvention themselves, is key to designing, implementing, and maintaining security subsystems that achieve security goals in healthcare settings. To this end, we present our research on workarounds to computer security in healthcare settings without compromising the fundamental health goals. We argue and demonstrate that understanding workarounds to computer security, especially in medical settings, requires not only analyses of computer rules and processes, but also interviews and observations with users and security personnel. In addition, we discuss the value of shadowing clinicians and conducting focus groups with them to understand their motivations and tradeoffs for circumvention. Ethnographic investigation of workflow is paramount to achieving security objectives.
Presented at Safety, Security, Privacy and Interoperability of Health Information Technologies (HealthTec 2014), August 19, 2014 in San Diego, CA. See video at URL below.
Impedance control is a common framework for control of lower-limb prosthetic devices. This approach requires choosing many impedance controller parameters. In this paper, we show how to learn these parameters for lower-limb prostheses by observation of unimpaired human walkers. We validate our approach in simulation of a transfemoral amputee, and we demonstrate the performance of the learned parameters in a preliminary experiment with a lower-limb prosthetic device.
Physical-layer and MAC-layer defense mechanisms against jamming attacks are often inherently reactive to experienced delay and loss of throughput after being attacked. In this paper, we study a proactive defense mechanism against jamming in multi-hop relay networks, in which one or more network sources introduce a deceptive network flow along a disjoint routing path. The deceptive mechanism leverages strategic jamming behaviors, causing the attacker to expend resources on targeting deceptive flows and thereby reducing the impact on real network trac. We use a two-stage game model to obtain deception strategies at Stackelberg equilibrium for sel sh and altruistic nodes. The equilibrium solutions are illustrated and corroborated through a simulation study.
This paper presents a factor graph based framework (namely AttackTagger)
for high accuracy and preemptive detection of attacks. We use security logs
on real-incidents that occurred over a six-year period at the National Cen-
ter for Supercomputing Applications (NCSA) at the University of Illinois at
Urbana-Champaign to evaluate AttackTagger. Our data consist of attacks
that led directly to the target system being compromised, i.e., not detected
in advance, either by the security analysts or by intrusion detection sys-
tems. AttackTagger detected 74 percent of attacks, a vast majority of them
were detected before the system misuse. AttackTagger uncovered six hidden
attacks that were not detected by security analysts.
This paper considers a decentralized switched control problem where exact conditions for controller synthesis are obtained in the form of semidefinite programming (SDP). The formulation involves a discrete-time switched linear plant that has a nested structure, and whose system matrices switch between a finite number of values according to finite-state automation. The goal of this paper is to synthesize a commensurately nested switched controller to achieve a desired level of 2-induced norm performance. The nested structures of both plant and controller are characterized by block lower-triangular system matrices. For this setup, exact conditions are provided for the existence of a finite path-dependent synthesis. These include conditions for the completion of scaling matrices obtained through an extended matrix completion lemma.When individual controller dimensions are chosen at least as large as the plant, these conditions reduce to a set of linear matrix inequalities. The completion lemma also provides an algorithm to complete closed-loop scaling matrices, leading to inequalities for ontroller synthesis that are solvable either algebraically or numerically through SDP.
Published in IEEE Transactions on Control of Network Systems, volume 2, issue 4, December 2015.
This paper presents a factor graph based framework (namely AttackTagger) for high accuracy and preemptive detection of attacks. We use security logs on real-incidents that occurred over a six-year period at the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign to evaluate AttackTagger. Our data consist of attacks that led directly to the target system being compromised, i.e., not detected in advance, either by the security analysts or by intrusion detection systems. AttackTagger detected 74 percent of attacks, a vast majority of them were detected before the system misuse. AttackTagger uncovered six hidden attacks that were not detected by security analysts.
We introduce a framework for controlling the energy provided or absorbed by distributed energy resources (DERs) in power distribution networks. In this framework, there is a set of agents referred to as aggregators that interact with the wholesale electricity market, and through some market-clearing mechanism, are requested (and will be compensated for) to provide (or absorb) certain amount of active (or reactive) power over some period of time. In order to fulfill the request, each aggregator interacts with a set of DERs and offers them some price per unit of active (or reactive) power they provide (or absorb); the objective is for the aggregator to design a pricing strategy for incentivizing DERs to change its active (or reactive) power consumption (or production) so as they collectively provide the amount that the aggregator has been asked for. In order to make a decision, each DER uses the price information provided by the aggregator and some estimate of the average active (or reactive) power that neighboring DERs can provide computed through some exchange of information among them; this exchange is described by a connected undirected graph. The focus is on the DER strategic decision-making process, which we cast as a game. In this context, we provide sufficient conditions on the aggregator's pricing strategy under which this game has a unique Nash equilibrium. Then, we propose a distributed iterative algorithm that adheres to the graph that describes the exchange of information between DERs that allows them to seek for this Nash equilibrium. We illustrate our results through several numerical simulations.
Presented as part of the DIMACS Workshop on Energy Infrastructure: Designing for Stability and Resilience, Rutgers University, Piscataway, NJ, February 20-22, 2013
Networks are complex and prone to bugs. Existing tools that check configuration files and data-plane state operate offline at timescales of seconds to hours, and cannot detect or prevent bugs as they arise. Is it possible to check network-wide invariants in real time, as the network state evolves? The key challenge here is to achieve extremely low latency during the checks so that network performance is not affected. In this paper, we present a preliminary design, VeriFlow, which suggests that this goal is achievable. VeriFlow is a layer between a software-defined networking controller and network devices that checks for network-wide invariant violations dynamically as each forwarding rule is inserted. Based on an implementation using a Mininet OpenFlow network and Route Views trace data, we find that VeriFlow can perform rigorous checking within hundreds of microseconds per rule insertion.
This survey provides a structured and comprehensive overview of research on security and privacy in computer and communication networks that use game-theoretic approaches. We present a selected set of works to highlight the application of game theory in addressing different forms of security and privacy problems in computer networks and mobile applications. We organize the presented works in six main categories: security of the physical and MAC layers, security of self-organizing networks, intrusion detection systems, anonymity and privacy, economics of network security, and cryptography. In each category, we identify security problems, players, and game models. We summarize the main results of selected works, such as equilibrium analysis and security mechanism designs. In addition, we provide a discussion on the advantages, drawbacks, and future direction of using game theory in this field. In this survey, our goal is to instill in the reader an enhanced understanding of different research approaches in applying gametheoretic methods to network security. This survey can also help researchers from various fields develop game-theoretic solutions to current and emerging security problems in computer networking.
The implementation of automated regulatory control has been around since the middle of the last century through analog means. It has allowed engineers to operate the plant more consistently by focusing on overall operations and settings instead of individual monitoring of local instruments (inside and outside of a control room). A similar approach is proposed for cyber security, where current border-protection designs have been inherited from information technology developments that lack consideration of the high-reliability, high consequence nature of industrial control systems. Instead of an independent development, however, an integrated approach is taken to develop a holistic understanding of performance. This performance takes shape inside a multiagent design, which provides a notional context to model highly decentralized and complex industrial process control systems, the nervous system of critical infrastructure. The resulting strategy will provide a framework for researching solutions to security and unrecognized interdependency concerns with industrial control systems.
When SCADA systems are exposed to public networks, attackers can more easily penetrate the control systems that operate electrical power grids, water plants, and other critical infrastructures. To detect such attacks, SCADA systems require an intrusion detection technique that can understand the information carried by their usually proprietary network protocols.
To achieve that goal, we propose to attach to SCADA systems a specification-based intrusion detection framework based on Bro [7][8], a runtime network traffic analyzer. We have built a parser in Bro to support DNP3, a network protocol widely used in SCADA systems that operate electrical power grids. This built-in parser provides a clear view of all network events related to SCADA systems. Consequently, security policies to analyze SCADA-specific semantics related to the network events can be accurately defined. As a proof of concept, we specify a protocol validation policy to verify that the semantics of the data extracted from network packets conform to protocol definitions. We performed an experimental evaluation to study the processing capabilities of the proposed intrusion detection framework.
Mixing the actor model with other concurrency models in a single program can break the actor abstraction. This increases the chance of creating deadlocks and data races—two mistakes that are hard to make with actors. Furthermore, it prevents the use of many advanced testing, modeling, and verification tools for actors, as these require pure actor programs. This study is the first to point out the phenomenon of mixing concurrency models by Scala developers and to systematically identify the factors leading to it. We studied 15 large, mature, and actively maintained actor programs written in Scala and found that 80% of them mix the actor model with another concurrency model. Consequently, a large part of real-world actor programs does not use actors to their fullest advantage. Inspection of the programs and discussion with the developers reveal two reasons for mixing that can be influenced by researchers and library-builders: weaknesses in the actor library implementations, and shortcomings of the actor model itself.
Recent work in traffic analysis has shown that traffic patterns leaked through side channels can be used to recover important semantic information. For instance, attackers can find out which website, or which page on a website, a user is accessing simply by monitoring the packet size distribution. We show that traffic analysis is even a greater threat to privacy than previously thought by introducing a new attack that can be carried out remotely. In particular, we show that, to perform traffic analysis, adversaries do not need to directly observe the traffic patterns. Instead, they can gain sufficient information by sending probes from a far-off vantage point that exploits a queuing side channel in routers.
To demonstrate the threat of such remote traffic analysis, we study a remote website detection attack that works against home broadband users. Because the remotely observed traffic patterns are more noisy than those obtained using previous schemes based on direct local traffic monitoring, we take a dynamic time warping (DTW) based approach to detecting fingerprints from the same website. As a new twist on website fingerprinting, we consider a website detection attack, where the attacker aims to find out whether a user browses a particular web site, and its privacy implications. We show experimentally that, although the success of the attack is highly variable, depending on the target site, for some sites very low error rates. We also show how such website detection can be used to deanonymize message board users.
Cyber-physical systems (CPS) may interact and manipulate objects in the physical world, and therefore ideally would have formal guarantees about their behavior. Performing statictime proofs of safety invariants, however, may be intractable for systems with distributed physical-world interactions. This is further complicated when realistic communication models are considered, for which there may not be bounds on message delays, or even that messages will eventually reach their destination. In this work, we address the challenge of proving safety and progress in distributed CPS communicating over an unreliable communication layer. This is done in two parts. First, we show that system safety can be verified by partially relying upon runtime checks, and that dropping messages if the run-time checks fail will maintain safety. Second, we use a notion of compatible action chains to guarantee system progress, despite unbounded message delays.We demonstrate the effectiveness of our approach on a multi-agent vehicle flocking system, and show that the overhead of the proposed run-time checks is not overbearing.
In the current generation of SCADA (Supervisory Control And Data Acquisition) systems used in power grids, a sophisticated attacker can exploit system vulnerabilities and use a legitimate maliciously crafted command to cause a wide range of system changes that traditional contingency analysis does not consider and remedial action schemes cannot handle. To detect such malicious commands, we propose a semantic analysis framework based on a distributed network of intrusion detection systems (IDSes). The framework combines system knowledge of both cyber and physical infrastructure in power grid to help IDS to estimate execution consequences of control commands, thus to reveal attacker’s malicious intentions. We evaluated the approach on the IEEE 30-bus system. Our experiments demonstrate that: (i) by opening 3 transmission lines, an attacker can avoid detection by the traditional contingency analysis and instantly put the tested 30-bus system into an insecure state and (ii) the semantic analysis provides reliable detection of malicious commands with a small amount of analysis time.
The integration of control systems with modern information technologies has posed potential security threats for critical infrastructures. The communication channels of the control system are vulnerable to malicious jamming and Denial-of-Service (DoS) attacks, which lead to severe timedelays and degradation of control performances. In this paper, we design resilient controllers for cyber-physical control systems under DoS attacks. We establish a coupled design framework which incorporates the cyber configuration policy of Intrusion Detection Systems (IDSs) and the robust control of dynamical system. We propose design algorithms based on value iteration methods and linear matrix inequalities for computing the optimal cyber security policy and control laws. We illustrate the design principle with an example from power systems. The results are corroborated by numerical examples and simulations.
In this paper, we study quasi-static manipulation of a planar kinematic chain with a fixed base in which each joint is a linearly-elastic torsional spring. The shape of this chain when in static equilibrium can be represented as the solution to a discrete-time optimal control problem, with boundary conditions that vary with the position and orientation of the last link. We prove that the set of all solutions to this problem is a smooth manifold that can be parameterized by a single chart. For manipulation planning, we show several advantages of working in this chart instead of in the space of boundary conditions, particularly in the context of a sampling-based planning algorithm. Examples are provided in simulation.
Inverse optimal control is the problem of computing a cost function with respect to which observed state and input trajectories are optimal. We present a new method of inverse optimal control based on minimizing the extent to which observed trajectories violate first-order necessary conditions for optimality. We consider continuous-time deterministic optimal control systems with a cost function that is a linear combination of known basis functions. We compare our approach with three prior methods of inverse optimal control. We demonstrate the performance of these methods by performing simulation experiments using a collection of nominal system models. We compare the robustness of these methods by analysing how they perform under perturbations to the system. To this purpose, we consider two scenarios: one in which we exactly know the set of basis functions in the cost function, and another in which the true cost function contains an unknown perturbation. Results from simulation experiments show that our new method is more computationally efficient than prior methods, performs similarly to prior approaches under large perturbations to the system, and better learns the true cost function under small perturbations.