Reinforcement Learning Algorithms for CPS: The Open-Source TEXPLORE Code Release for Reinforcement Learning on Robots
Abstract:
The use of robots in society could be expanded by using reinforcement learning (RL) to allow robots to learn and adapt to new situations on-line. RL is a paradigm for learning sequential decision making tasks, usually formulated as a Markov Decision Process (MDP). For an RL algorithm to be practical for robotic control tasks, it must learn in very few samples, while continually taking actions in real-time. In addition, the algorithm must learn efficiently in the face of noise, sensor/actuator delays, and continuous state features. In this paper, we present the texplore ROS code release, which contains texplore, the first algorithm to address all of these challenges together. We demonstrate texplore learning to control the velocity of an autonomous vehicle in real-time. texplore has been released as an open-source ROS repository, enabling learning on a variety of robot tasks.
- PDF document
- 335.71 KB
- 76 downloads
- Download
- PDF version
- Printer-friendly version
- CPS Domains
- Energy Sector
- Smart Grid
- Control
- Platforms
- Energy
- Modeling
- Real-Time Coordination
- Critical Infrastructure
- Robotics
- CPS Technologies
- Foundations
- Markov Decision Processes
- Reinforcement learning
- The University of Texas at Austin
- 2015 CPS PI MTG Videos, Posters, and Abstracts
- National CPS PI Meeting 2015
- 2015
- Academia
- Abstract
- Poster