Biblio
This article pertains to cognitive security. False news is becoming a growing problem. During a study, it was found that a crowdsourcing approach could help detect fake news sources.
This article pertains to cognitive security. Older users shared more fake news than younger ones regardless of education, sex, race, income, or how many links they shared. In fact, age predicted their behavior better than any other characteristic -- including party affiliation.
A machine learning model of the protein interaction network has been developed by researchers to explore how viruses operate. This research can be applied to different types of attacks and network models across different fields, including network security. The capacity to determine how trolls and bots influence users on social media platforms has also been explored through this research.
This article pertains to cognitive security. There are deep concerns about the growing ability to create deepfakes. There is also deep concern about the malicious use of deepfakes to change the opinions of how people see a public figure.
Computational models of cognitive processes may be employed in cyber-security tools, experiments, and simulations to address human agency and effective decision-making in keeping computational networks secure. Cognitive modeling can addresses multi-disciplinary cyber-security challenges requiring cross-cutting approaches over the human and computational sciences such as the following: (a) adversarial reasoning and behavioral game theory to predict attacker subjective utilities and decision likelihood distributions, (b) human factors of cyber tools to address human system integration challenges, estimation of defender cognitive states, and opportunities for automation, (c) dynamic simulations involving attacker, defender, and user models to enhance studies of cyber epidemiology and cyber hygiene, and (d) training effectiveness research and training scenarios to address human cyber-security performance, maturation of cyber-security skill sets, and effective decision-making. Models may be initially constructed at the group-level based on mean tendencies of each subject's subgroup, based on known statistics such as specific skill proficiencies, demographic characteristics, and cultural factors. For more precise and accurate predictions, cognitive models may be fine-tuned to each individual attacker, defender, or user profile, and updated over time (based on recorded behavior) via techniques such as model tracing and dynamic parameter fitting.
To improve cyber defense, researchers have developed algorithms to allocate limited defense resources optimally. Through signaling theory, we have learned that it is possible to trick the human mind when using deceptive signals. The present work is an initial step towards developing a psychological theory of cyber deception. We use simulations to investigate how humans might make decisions under various conditions of deceptive signals in cyber-attack scenarios. We created an Instance-Based Learning (IBL) model of the attacker decisions using the ACT-R cognitive architecture. We ran simulations against the optimal deceptive signaling algorithm and against four alternative deceptive signal schemes. Our results show that the optimal deceptive algorithm is more effective at reducing the probability of attack and protecting assets compared to other signaling conditions, but it is not perfect. These results shed some light on the expected effectiveness of deceptive signals for defense. The implications of these findings are discussed.
Inverting human factors can aid in cyber defense by flipping well-known guidelines and using them to degrade and disrupt the performance of a cyber attacker. There has been significant research on how we perform cyber defense tasks and how we should present information to operators, cyber defenders, and analysts to make them more efficient and more effective. We can actually create these situations just as easily as we can mitigate them. Oppositional human factors are a new way to apply well-known research on human attention allocation to disrupt potential cyber attackers and provide much-needed asymmetric benefits to the defender.
Since the concept of deception for cybersecurity was introduced decades ago, several primitive systems, such as honeypots, have been attempted. More recently, research on adaptive cyber defense techniques has gained momentum. The new research interests in this area motivate us to provide a high-level overview of cyber deception. We analyze potential strategies of cyber deception and its unique aspects. We discuss the research challenges of creating effective cyber deception-based techniques and identify future research directions.
Dagger is a modeling and visualization framework that addresses the challenge of representing knowledge and information for decision-makers, enabling them to better comprehend the operational context of network security data. It allows users to answer critical questions such as “Given that I care about mission X, is there any reason I should be worried about what is going on in cyberspace?” or “If this system fails, will I still be able to accomplish my mission?”.
This article pertains to cognitive security. There are deep concerns about the growing ability to create deepfakes. There is also deep concern about the malicious use of deepfakes to change the opinions of how people see a public figure.
This article pertains to cognitive security. Detecting manipulated photos, or "deepfakes," can be difficult. Deepfakes have become a major concern as their use in disinformation campaigns, social media manipulation, and propaganda grows worldwide.
This article pertains to cognitive security and human behavior. Facebook announced a recent takedown of 51 Facebook accounts, 36 Facebook pages, seven Facebook groups and three Instagram accounts that it says were all involved in coordinated "inauthentic behavior." Facebook says the activity originated geographically from Iran.
Researchers at the NYU Tandon School of Engineering developed a technique to prevent sophisticated methods of altering photos and videos to produce deep fakes, which are often weaponized to influence people. The technique developed by researchers involves the use of artificial intelligence (AI) to determine the authenticity of images and videos.
In this article, we review previous work on biometric security under a recent framework proposed in the field of adversarial machine learning. This allows us to highlight novel insights on the security of biometric systems when operating in the presence of intelligent and adaptive attackers that manipulate data to compromise normal system operation. We show how this framework enables the categorization of known and novel vulnerabilities of biometric recognition systems, along with the corresponding attacks, countermeasures, and defense mechanisms. We report two application examples, respectively showing how to fabricate a more effective face spoofing attack, and how to counter an attack that exploits an unknown vulnerability of an adaptive face-recognition system to compromise its face templates.