Visible to the public BiblioConflict Detection Enabled

Filters: Author is Thomas Raub  [Clear All Filters]
2021-12-21
Himanshu Neema, Janos Sztipanovits, Cornelius Steinbrink, Thomas Raub, Bastian Cornelsen, Sebastian Lehnhoff.  2019.  Simulation integration platforms for cyber-physical systems. DESTION 2019. :10-19.

Simulation-based analysis is essential in the model-based design process of Cyber-Physical Systems (CPS). Since heterogeneity is inherent to CPS, virtual prototyping of CPS designs and the simulation of their behavior in various environments typically involve a number of physical and computation/ communication domains interacting with each other. Affordability of the model-based design process makes the use of existing domain-specific modeling and simulation tools all but mandatory. However, this pressure establishes the requirement for integrating the domain-specific models and simulators into a semantically consistent and efficient system-of-system simulation. The focus of the paper is the interoperability of popular integration platforms supporting heterogeneous multi-model simulations. We examine the relationship among three existing platforms: the High-Level Architecture (HLA)-based CPS Wind Tunnel (CPSWT), MOSAIK, and the Functional Mockup Unit (FMU). We discuss approaches to establish interoperability and present results of ongoing work in the context of an example.

2019-08-21
Himanshu Neema, Janos Sztipanovits, Cornelius Steinbrink, Thomas Raub, Bastian Cornelsen, Sebastian Lehnhoff.  2019.  Simulation Integration Platforms for Cyber-physical Systems. Workshop on Design Automation for Cyber-Physical Systems and Internet-of-Things. :10–19.

Simulation-based analysis is essential in the model-based design process of Cyber-Physical Systems (CPS). Since heterogeneity is inherent to CPS, virtual prototyping of CPS designs and the simulation of their behavior in various environments typically involve a number of physical and computation/communication domains interacting with each other. Affordability of the model-based design process makes the use of existing domain-specific modeling and simulation tools all but mandatory. However, this pressure establishes the requirement for integrating the domain-specific models and simulators into a semantically consistent and efficient system-of-system simulation. The focus of the paper is the interoperability of popular integration platforms supporting heterogeneous multi-model simulations. We examine the relationship among three existing platforms: the High-Level Architecture (HLA)-based CPS Wind Tunnel (CPSWT), MOSAIK, and the Functional Mockup Unit (FMU). We discuss approaches to establish interoperability and present results of ongoing work in the context of an example.