Visible to the public Biblio

Found 3226 results

Filters: First Letter Of Last Name is C  [Clear All Filters]
2020-07-16
Velmovitsky, Pedro Elkind, Viana, Marx, Cirilo, Elder, Milidiu, Ruy Luiz, Pelegrini Morita, Plinio, Lucena, Carlos José Pereira de.  2019.  Promoting Reusability and Extensibility in the Engineering of Domain-Specific Conversational Systems. 2019 8th Brazilian Conference on Intelligent Systems (BRACIS). :473—478.

Conversational systems are computer programs that interact with users using natural language. Considering the complexity and interaction of the different components involved in building intelligent conversational systems that can perform diverse tasks, a promising approach to facilitate their development is by using multiagent systems (MAS). This paper reviews the main concepts and history of conversational systems, and introduces an architecture based on MAS. This architecture was designed to support the development of conversational systems in the domain chosen by the developer while also providing a reusable built-in dialogue control. We present a practical application in the healthcare domain. We observed that it can help developers to create conversational systems in different domains while providing a reusable and centralized dialogue control. We also present derived lessons learned that can be helpful to steer future research on engineering domain-specific conversational systems.

Biancardi, Beatrice, Wang, Chen, Mancini, Maurizio, Cafaro, Angelo, Chanel, Guillaume, Pelachaud, Catherine.  2019.  A Computational Model for Managing Impressions of an Embodied Conversational Agent in Real-Time. 2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII). :1—7.

This paper presents a computational model for managing an Embodied Conversational Agent's first impressions of warmth and competence towards the user. These impressions are important to manage because they can impact users' perception of the agent and their willingness to continue the interaction with the agent. The model aims at detecting user's impression of the agent and producing appropriate agent's verbal and nonverbal behaviours in order to maintain a positive impression of warmth and competence. User's impressions are recognized using a machine learning approach with facial expressions (action units) which are important indicators of users' affective states and intentions. The agent adapts in real-time its verbal and nonverbal behaviour, with a reinforcement learning algorithm that takes user's impressions as reward to select the most appropriate combination of verbal and non-verbal behaviour to perform. A user study to test the model in a contextualized interaction with users is also presented. Our hypotheses are that users' ratings differs when the agents adapts its behaviour according to our reinforcement learning algorithm, compared to when the agent does not adapt its behaviour to user's reactions (i.e., when it randomly selects its behaviours). The study shows a general tendency for the agent to perform better when using our model than in the random condition. Significant results shows that user's ratings about agent's warmth are influenced by their a-priori about virtual characters, as well as that users' judged the agent as more competent when it adapted its behaviour compared to random condition.

Ciupe, Aurelia, Mititica, Doru Florin, Meza, Serban, Orza, Bogdan.  2019.  Learning Agile with Intelligent Conversational Agents. 2019 IEEE Global Engineering Education Conference (EDUCON). :1100—1107.

Conversational agents assist traditional teaching-learning instruments in proposing new designs for knowledge creation and learning analysis, across organizational environments. Means of building common educative background in both industry and academic fields become of interest for ensuring educational effectiveness and consistency. Such a context requires transferable practices and becomes the basis for the Agile adoption into Higher Education, at both curriculum and operational levels. The current work proposes a model for delivering Agile Scrum training through an assistive web-based conversational service, where analytics are collected to provide an overview on learners' knowledge path. Besides its specific applicability into Software Engineering (SE) industry, the model is to assist the academic SE curriculum. A user-acceptance test has been carried out among 200 undergraduate students and patterns of interaction have been depicted for 2 conversational strategies.

Cronin, Patrick, Gouert, Charles, Mouris, Dimitris, Tsoutsos, Nektarios Georgios, Yang, Chengmo.  2019.  Covert Data Exfiltration Using Light and Power Channels. 2019 IEEE 37th International Conference on Computer Design (ICCD). :301—304.

As the Internet of Things (IoT) continues to expand into every facet of our daily lives, security researchers have warned of its myriad security risks. While denial-of-service attacks and privacy violations have been at the forefront of research, covert channel communications remain an important concern. Utilizing a Bluetooth controlled light bulb, we demonstrate three separate covert channels, consisting of current utilization, luminosity and hue. To study the effectiveness of these channels, we implement exfiltration attacks using standard off-the-shelf smart bulbs and RGB LEDs at ranges of up to 160 feet. We analyze the identified channels for throughput, generality and stealthiness, and report transmission speeds of up to 832 bps.

2020-07-13
Paschalides, Demetris, Christodoulou, Chrysovalantis, Andreou, Rafael, Pallis, George, Dikaiakos, Marios D., Kornilakis, Alexandros, Markatos, Evangelos.  2019.  Check-It: A plugin for Detecting and Reducing the Spread of Fake News and Misinformation on the Web. 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI). :298–302.
Over the past few years, we have been witnessing the rise of misinformation on the Internet. People fall victims of fake news continuously, and contribute to their propagation knowingly or inadvertently. Many recent efforts seek to reduce the damage caused by fake news by identifying them automatically with artificial intelligence techniques, using signals from domain flag-lists, online social networks, etc. In this work, we present Check-It, a system that combines a variety of signals into a pipeline for fake news identification. Check-It is developed as a web browser plugin with the objective of efficient and timely fake news detection, while respecting user privacy. In this paper, we present the design, implementation and performance evaluation of Check-It. Experimental results show that it outperforms state-of-the-art methods on commonly-used datasets.
Lee, Yong Up, Kang, Kyeong-Yoon, Choi, Ginkyu.  2019.  Secure Visible Light Encryption Communication Technique for Smart Home Service. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0827–0831.
For the security enhancement of the conventional visible light (VL) communication which allows the easy intrusion by adjacent adversary due to visible signal characteristic, the VL communication technique based on the asymmetric Rivest-Shamir-Adleman (RSA) encryption method is proposed for smart indoor service in this paper, and the optimal key length of the RSA encryption process for secure VL communication technique is investigated, and also the error performance dependent on the various asymmetric encryption key is analyzed for the performance evaluation of the proposed technique. Then we could see that the VL communication technique based on the RSA encryption gives the similar RMSE performance independent of the length of the public or private key and provides the better error performance as the signal to noise ratio (SNR) increases.
Manaka, Keisuke, Chen, Liyuan, Habuchi, Hiromasa, Kozawa, Yusuke.  2019.  Proposal of Equal-Weight (2, 2) Visual Secret Sharing Scheme on VN-CSK Illumination Light Communication. 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS). :1–5.
Variable N-parallel code-shift-keying (VN-CSK) system has been proposed for solving the dimming control problem and the adjacent illumination light interference in illumination light communication. VN-CSK system only focuses on separating the light signal in the illumination light overlapping area. While, it is considerable to transmit a new data using the light overlapping. Visual secret sharing (VSS) scheme is a kind of secret sharing scheme, which distributes the secret data for security and restore by overlapping. It has high affinity to visible light communication. In this paper, a system combined with visible light communication and (2,2)-VSS scheme is proposed. In the proposed system, a modified pseudo orthogonal M-sequence is used that the occurrence probability of 0 and 1 of share is one-half in order to achieve a constant illuminance. In addition, this system use Modified Pseudo-Orthogonal M-sequence(MPOM) for ensuring the lighting function. The bit error rate performance of the proposed system is evaluated under the indoor visible light communication channel by simulation.
Ghosh, Debanjana, Chatterjee, Soumyajit, Kothari, Vasudha, Kumar, Aakash, Nair, Mahesh, Lokesh, Ella.  2019.  An application of Li-Fi based Wireless Communication System using Visible Light Communication. 2019 International Conference on Opto-Electronics and Applied Optics (Optronix). :1–3.
This paper attempts to clarify the concept and applications of Li-Fi technology. The current Wi-Fi network use Radio Frequency waves, but the usage of the available RF spectrum is limited. Therefore a new technology, Li-Fi has come into picture. Li-Fi is a recently developed technology. This paper explains how array of LEDs are used to transmit data in the visible light spectrum. This technology has advantages like security, increased accessible spectrum, low latency efficiency and much higher speed as compared to Wi- Fi. The aim of this research paper is to design a Li-Fi transceiver using Arduino which is able to transmit and receive data in binary format. The software coding is done in Arduino- Uno platform. Successful transmission and reception of data(alphanumeric) has been done.
Fan, Wenjun, Ziembicka, Joanna, de Lemos, Rogério, Chadwick, David, Di Cerbo, Francesco, Sajjad, Ali, Wang, Xiao-Si, Herwono, Ian.  2019.  Enabling Privacy-Preserving Sharing of Cyber Threat Information in the Cloud. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :74–80.
Network threats often come from multiple sources and affect a variety of domains. Collaborative sharing and analysis of Cyber Threat Information (CTI) can greatly improve the prediction and prevention of cyber-attacks. However, CTI data containing sensitive and confidential information can cause privacy exposure and disclose security risks, which will deter organisations from sharing their CTI data. To address these concerns, the consortium of the EU H2020 project entitled Collaborative and Confidential Information Sharing and Analysis for Cyber Protection (C3ISP) has designed and implemented a framework (i.e. C3ISP Framework) as a service for cyber threat management. This paper focuses on the design and development of an API Gateway, which provides a bridge between end-users and their data sources, and the C3ISP Framework. It facilitates end-users to retrieve their CTI data, regulate data sharing agreements in order to sanitise the data, share the data with privacy-preserving means, and invoke collaborative analysis for attack prediction and prevention. In this paper, we report on the implementation of the API Gateway and experiments performed. The results of these experiments show the efficiency of our gateway design, and the benefits for the end-users who use it to access the C3ISP Framework.
2020-07-10
Nahmias, Daniel, Cohen, Aviad, Nissim, Nir, Elovici, Yuval.  2019.  TrustSign: Trusted Malware Signature Generation in Private Clouds Using Deep Feature Transfer Learning. 2019 International Joint Conference on Neural Networks (IJCNN). :1—8.

This paper presents TrustSign, a novel, trusted automatic malware signature generation method based on high-level deep features transferred from a VGG-19 neural network model pre-trained on the ImageNet dataset. While traditional automatic malware signature generation techniques rely on static or dynamic analysis of the malware's executable, our method overcomes the limitations associated with these techniques by producing signatures based on the presence of the malicious process in the volatile memory. Signatures generated using TrustSign well represent the real malware behavior during runtime. By leveraging the cloud's virtualization technology, TrustSign analyzes the malicious process in a trusted manner, since the malware is unaware and cannot interfere with the inspection procedure. Additionally, by removing the dependency on the malware's executable, our method is capable of signing fileless malware. Thus, we focus our research on in-browser cryptojacking attacks, which current antivirus solutions have difficulty to detect. However, TrustSign is not limited to cryptojacking attacks, as our evaluation included various ransomware samples. TrustSign's signature generation process does not require feature engineering or any additional model training, and it is done in a completely unsupervised manner, obviating the need for a human expert. Therefore, our method has the advantage of dramatically reducing signature generation and distribution time. The results of our experimental evaluation demonstrate TrustSign's ability to generate signatures invariant to the process state over time. By using the signatures generated by TrustSign as input for various supervised classifiers, we achieved 99.5% classification accuracy.

Koloveas, Paris, Chantzios, Thanasis, Tryfonopoulos, Christos, Skiadopoulos, Spiros.  2019.  A Crawler Architecture for Harvesting the Clear, Social, and Dark Web for IoT-Related Cyber-Threat Intelligence. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:3—8.

The clear, social, and dark web have lately been identified as rich sources of valuable cyber-security information that -given the appropriate tools and methods-may be identified, crawled and subsequently leveraged to actionable cyber-threat intelligence. In this work, we focus on the information gathering task, and present a novel crawling architecture for transparently harvesting data from security websites in the clear web, security forums in the social web, and hacker forums/marketplaces in the dark web. The proposed architecture adopts a two-phase approach to data harvesting. Initially a machine learning-based crawler is used to direct the harvesting towards websites of interest, while in the second phase state-of-the-art statistical language modelling techniques are used to represent the harvested information in a latent low-dimensional feature space and rank it based on its potential relevance to the task at hand. The proposed architecture is realised using exclusively open-source tools, and a preliminary evaluation with crowdsourced results demonstrates its effectiveness.

Yang, Ying, Yang, Lina, Yang, Meihong, Yu, Huanhuan, Zhu, Guichun, Chen, Zhenya, Chen, Lijuan.  2019.  Dark web forum correlation analysis research. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1216—1220.

With the rapid development of the Internet, the dark network has also been widely used in the Internet [1]. Due to the anonymity of the dark network, many illegal elements have committed illegal crimes on the dark. It is difficult for law enforcement officials to track the identity of these cyber criminals using traditional network survey techniques based on IP addresses [2]. The threat information is mainly from the dark web forum and the dark web market. In this paper, we introduce the current mainstream dark network communication system TOR and develop a visual dark web forum post association analysis system to graphically display the relationship between various forum messages and posters, and help law enforcement officers to explore deep levels. Clues to analyze crimes in the dark network.

Yang, Ying, Yu, Huanhuan, Yang, Lina, Yang, Ming, Chen, Lijuan, Zhu, Guichun, Wen, Liqiang.  2019.  Hadoop-based Dark Web Threat Intelligence Analysis Framework. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). :1088—1091.

With the development of network services and people's privacy requirements continue to increase. On the basis of providing anonymous user communication, it is necessary to protect the anonymity of the server. At the same time, there are many threatening crime messages in the dark network. However, many scholars lack the ability or expertise to conduct research on dark-net threat intelligence. Therefore, this paper designs a framework based on Hadoop is hidden threat intelligence. The framework uses HDFS as the underlying storage system to build a HBase-based distributed database to store and manage threat intelligence information. According to the heterogeneous type of the forum, the web crawler is used to collect data through the anonymous TOR tool. The framework is used to identify the characteristics of key dark network criminal networks, which is the basis for the later dark network research.

Cai, Zhipeng, Miao, Dongjing, Li, Yingshu.  2019.  Deletion Propagation for Multiple Key Preserving Conjunctive Queries: Approximations and Complexity. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :506—517.

This paper studies the deletion propagation problem in terms of minimizing view side-effect. It is a problem funda-mental to data lineage and quality management which could be a key step in analyzing view propagation and repairing data. The investigated problem is a variant of the standard deletion propagation problem, where given a source database D, a set of key preserving conjunctive queries Q, and the set of views V obtained by the queries in Q, we try to identify a set T of tuples from D whose elimination prevents all the tuples in a given set of deletions on views △V while preserving any other results. The complexity of this problem has been well studied for the case with only a single query. Dichotomies, even trichotomies, for different settings are developed. However, no results on multiple queries are given which is a more realistic case. We study the complexity and approximations of optimizing the side-effect on the views, i.e., find T to minimize the additional damage on V after removing all the tuples of △V. We focus on the class of key-preserving conjunctive queries which is a dichotomy for the single query case. It is surprising to find that except the single query case, this problem is NP-hard to approximate within any constant even for a non-trivial set of multiple project-free conjunctive queries in terms of view side-effect. The proposed algorithm shows that it can be approximated within a bound depending on the number of tuples of both V and △V. We identify a class of polynomial tractable inputs, and provide a dynamic programming algorithm to solve the problem. Besides data lineage, study on this problem could also provide important foundations for the computational issues in data repairing. Furthermore, we introduce some related applications of this problem, especially for query feedback based data cleaning.

Chen, Shuo-Han, Yang, Ming-Chang, Chang, Yuan-Hao, Wu, Chun-Feng.  2019.  Enabling File-Oriented Fast Secure Deletion on Shingled Magnetic Recording Drives. 2019 56th ACM/IEEE Design Automation Conference (DAC). :1—6.

Existing secure deletion approaches are inefficient in erasing data permanently because file systems have no knowledge of the data layout on the storage device, nor is the storage device aware of file information within the file systems. This inefficiency is exaggerated on the emerging shingled magnetic recording (SMR) drive due to its inherent sequential-write constraint. On SMR drives, secure deletion requests may lead to serious write amplification and performance degradation if the data layout is not properly configured. Such observation motivates us to propose a file-oriented fast secure deletion (FFSD) strategy to alleviate the negative impacts of SMR drives' sequential-write constraint and improve the efficiency of secure deletion operations on SMR drives. A series of experiments was conducted to demonstrate the capability of the proposed strategy on improving the efficiency of secure deletion on SMR drives.

2020-07-09
Kassem, Ali, Ács, Gergely, Castelluccia, Claude, Palamidessi, Catuscia.  2019.  Differential Inference Testing: A Practical Approach to Evaluate Sanitizations of Datasets. 2019 IEEE Security and Privacy Workshops (SPW). :72—79.

In order to protect individuals' privacy, data have to be "well-sanitized" before sharing them, i.e. one has to remove any personal information before sharing data. However, it is not always clear when data shall be deemed well-sanitized. In this paper, we argue that the evaluation of sanitized data should be based on whether the data allows the inference of sensitive information that is specific to an individual, instead of being centered around the concept of re-identification. We propose a framework to evaluate the effectiveness of different sanitization techniques on a given dataset by measuring how much an individual's record from the sanitized dataset influences the inference of his/her own sensitive attribute. Our intent is not to accurately predict any sensitive attribute but rather to measure the impact of a single record on the inference of sensitive information. We demonstrate our approach by sanitizing two real datasets in different privacy models and evaluate/compare each sanitized dataset in our framework.

Wang, Wei-Chen, Lin, Ping-Hsien, Li, Yung-Chun, Ho, Chien-Chung, Chang, Yu-Ming, Chang, Yuan-Hao.  2019.  Toward Instantaneous Sanitization through Disturbance-induced Errors and Recycling Programming over 3D Flash Memory. 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1—8.

As data security has become one of the most crucial issues in modern storage system/application designs, the data sanitization techniques are regarded as the promising solution on 3D NAND flash-memory-based devices. Many excellent works had been proposed to exploit the in-place reprogramming, erasure and encryption techniques to achieve and implement the sanitization functionalities. However, existing sanitization approaches could lead to performance, disturbance overheads or even deciphered issues. Different from existing works, this work aims at exploring an instantaneous data sanitization scheme by taking advantage of programming disturbance properties. Our proposed design can not only achieve the instantaneous data sanitization by exploiting programming disturbance and error correction code properly, but also enhance the performance with the recycling programming design. The feasibility and capability of our proposed design are evaluated by a series of experiments on 3D NAND flash memory chips, for which we have very encouraging results. The experiment results show that the proposed design could achieve the instantaneous data sanitization with low overhead; besides, it improves the average response time and reduces the number of block erase count by up to 86.8% and 88.8%, respectively.

2020-07-06
Tripathi, Dipty, Maurya, Ashish Kumar, Chaturvedi, Amrita, Tripathi, Anil Kumar.  2019.  A Study of Security Modeling Techniques for Smart Systems. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :87–92.
The term “smart” has been used in many ways for describing systems and infrastructure such as smart city, smart home, smart grid, smart meter, etc. These systems may lie in the domain of critical security systems where security can be estimated in terms of confidentiality, integrity and some cases may involve availability for protection against the theft or damage of system resources as well as disruption of the system services. Although, in spite of, being a hot topic to enhance the quality of life, there is no concrete definition of what smart system is and what should be the characteristics of it. Thus, there is a need to identify what these systems actually are and how they can be designed securely. This work firstly attempts to describe attributes related to the smartness to define smart systems. Furthermore, we propose a secure smart system development life cycle, where the security is weaved at all the development phase of smart systems according to principles, guidelines, attack patterns, risk, vulnerability, exploits, and defined rules. Finally, the comparative study is performed for evaluation of traditional security modeling techniques for early assessment of threats and risks in smart systems.
Cerotti, D., Codetta-Raiteri, D., Egidi, L., Franceschinis, G., Portinale, L., Dondossola, G., Terruggia, R..  2019.  Analysis and Detection of Cyber Attack Processes targeting Smart Grids. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1–5.
This paper proposes an approach based on Bayesian Networks to support cyber security analysts in improving the cyber-security posture of the smart grid. We build a system model that exploits real world context information from both Information and Operational Technology environments in the smart grid, and we use it to demonstrate sample predictive and diagnostic analyses. The innovative contribution of this work is in the methodology capability of capturing the many dependencies involved in the assessment of security threats, and of supporting the security analysts in planning defense and detection mechanisms for energy digital infrastructures.
Chai, Yadeng, Liu, Yong.  2019.  Natural Spoken Instructions Understanding for Robot with Dependency Parsing. 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). :866–871.
This paper presents a method based on syntactic information, which can be used for intent determination and slot filling tasks in a spoken language understanding system including the spoken instructions understanding module for robot. Some studies in recent years attempt to solve the problem of spoken language understanding via syntactic information. This research is a further extension of these approaches which is based on dependency parsing. In this model, the input for neural network are vectors generated by a dependency parsing tree, which we called window vector. This vector contains dependency features that improves performance of the syntactic-based model. The model has been evaluated on the benchmark ATIS task, and the results show that it outperforms many other syntactic-based approaches, especially in terms of slot filling, it has a performance level on par with some state of the art deep learning algorithms in recent years. Also, the model has been evaluated on FBM3, a dataset of the RoCKIn@Home competition. The overall rate of correctly understanding the instructions for robot is quite good but still not acceptable in practical use, which is caused by the small scale of FBM3.
Ben, Yongming, Han, Yanni, Cai, Ning, An, Wei, Xu, Zhen.  2019.  An Online System Dependency Graph Anomaly Detection based on Extended Weisfeiler-Lehman Kernel. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
Modern operating systems are typical multitasking systems: Running multiple tasks at the same time. Therefore, a large number of system calls belonging to different processes are invoked at the same time. By associating these invocations, one can construct the system dependency graph. In rapidly evolving system dependency graphs, how to quickly find outliers is an urgent issue for intrusion detection. Clustering analysis based on graph similarity will help solve this problem. In this paper, an extended Weisfeiler-Lehman(WL) kernel is proposed. Firstly, an embedded vector with indefinite dimensions is constructed based on the original dependency graph. Then, the vector is compressed with Simhash to generate a fingerprint. Finally, anomaly detection based on clustering is carried out according to these fingerprints. Our scheme can achieve prominent detection with high efficiency. For validation, we choose StreamSpot, a relevant prior work, to act as benchmark, and use the same data set as it to carry out evaluations. Experiments show that our scheme can achieve the highest detection precision of 98% while maintaining a perfect recall performance. Moreover, both quantitative and visual comparisons demonstrate the outperforming clustering effect of our scheme than StreamSpot.
Castillo, Anya, Arguello, Bryan, Cruz, Gerardo, Swiler, Laura.  2019.  Cyber-Physical Emulation and Optimization of Worst-Case Cyber Attacks on the Power Grid. 2019 Resilience Week (RWS). 1:14–18.

In this paper we report preliminary results from the novel coupling of cyber-physical emulation and interdiction optimization to better understand the impact of a CrashOverride malware attack on a notional electric system. We conduct cyber experiments where CrashOverride issues commands to remote terminal units (RTUs) that are controlling substations within a power control area. We identify worst-case loss of load outcomes with cyber interdiction optimization; the proposed approach is a bilevel formulation that incorporates RTU mappings to controllable loads, transmission lines, and generators in the upper-level (attacker model), and a DC optimal power flow (DCOPF) in the lower-level (defender model). Overall, our preliminary results indicate that the interdiction optimization can guide the design of experiments instead of performing a “full factorial” approach. Likewise, for systems where there are important dependencies between SCADA/ICS controls and power grid operations, the cyber-physical emulations should drive improved parameterization and surrogate models that are applied in scalable optimization techniques.

Chegenizadeh, Mostafa, Ali, Mohammad, Mohajeri, Javad, Aref, Mohammad Reza.  2019.  An Anonymous Attribute-based Access Control System Supporting Access Structure Update. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :85–91.
It is quite common nowadays for clients to outsource their personal data to a cloud service provider. However, it causes some new challenges in the area of data confidentiality and access control. Attribute-based encryption is a promising solution for providing confidentiality and fine-grained access control in a cloud-based cryptographic system. Moreover, in some cases, to preserve the privacy of clients and data, applying hidden access structures is required. Also, a data owner should be able to update his defined access structure at any time when he is online or not. As in several real-world application scenarios like e-health systems, the anonymity of recipients, and the possibility of updating access structures are two necessary requirements. In this paper, for the first time, we propose an attribute-based access control scheme with hidden access structures enabling the cloud to update access structures on expiry dates defined by a data owner.
2020-07-03
Fitwi, Alem, Chen, Yu, Zhu, Sencun.  2019.  A Lightweight Blockchain-Based Privacy Protection for Smart Surveillance at the Edge. 2019 IEEE International Conference on Blockchain (Blockchain). :552—555.

Witnessing the increasingly pervasive deployment of security video surveillance systems(VSS), more and more individuals have become concerned with the issues of privacy violations. While the majority of the public have a favorable view of surveillance in terms of crime deterrence, individuals do not accept the invasive monitoring of their private life. To date, however, there is not a lightweight and secure privacy-preserving solution for video surveillance systems. The recent success of blockchain (BC) technologies and their applications in the Internet of Things (IoT) shed a light on this challenging issue. In this paper, we propose a Lightweight, Blockchain-based Privacy protection (Lib-Pri) scheme for surveillance cameras at the edge. It enables the VSS to perform surveillance without compromising the privacy of people captured in the videos. The Lib-Pri system transforms the deployed VSS into a system that functions as a federated blockchain network capable of carrying out integrity checking, blurring keys management, feature sharing, and video access sanctioning. The policy-based enforcement of privacy measures is carried out at the edge devices for real-time video analytics without cluttering the network.

Arif, Syed Waqas, Coskun, Adem, Kale, Izzet.  2019.  A Fully Adaptive Lattice-based Notch Filter for Mitigation of Interference in GPS. 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME). :217—220.

Intentional interference presents a major threat to the operation of the Global Navigation Satellite Systems. Adaptive notch filtering provides an excellent countermeasure and deterrence against narrowband interference. This paper presents a comparative performance analysis of two adaptive notch filtering algorithms for GPS specific applications which are based on Direct form Second Order and Lattice-Based notch filter structures. Performance of each algorithm is evaluated considering the ratio of jamming to noise density against the effective signal to noise ratio at the output of the correlator. A fully adaptive lattice notch filter is proposed, which is able to simultaneously adapt its coefficients to alter the notch frequency along with the bandwidth of the notch filter. The filter demonstrated a superior tracking performance and convergence rate in comparison to an existing algorithm taken from the literature. Moreover, this paper describes the complete GPS modelling platform implemented in Simulink too.