Biblio
The next generation military environment requires a delay-tolerant network for sharing data and resources using an interoperable computerized, Command, Control, Communications, Intelligence, Surveillance and Reconnaissance (C4ISR) infrastructure. In this paper, we propose a new distributed SDN (Software-Defined Networks) architecture for tactical environments based on distributed cloudlets. The objective is to reduce the end-to-end delay of tactical traffic flow, and improve management capabilities, allowing flexible control and network resource allocation. The proposed SDN architecture is implemented over three layers: decentralized cloudlets layer where each cloudlet has its SDRN (Software-Defined Radio Networking) controller, decentralized MEC (Mobile Edge Computing) layer with an SDN controller for each MEC, and a centralized private cloud as a trusted third-part authority controlled by a centralized SDN controller. The experimental validations are done via relevant and realistic tactical scenarios based on strategic traffics loads, i.e., Tactical SMS (Short Message Service), UVs (Unmanned Vehicle) patrol deployment and high bite rate ISR (Intelligence, Surveillance, and Reconnaissance) video.
This article presents results and overview of conducted testing of active optical network devices. The base for the testing is originating in Kali Linux and penetration testing generally. The goal of tests is to either confirm or disprove a vulnerability of devices used in the tested polygon. The first part deals with general overview and topology of testing devices, the next part is dedicated to active and passive exploration and exploits. The last part provides a summary of the results.
Moving target defense (MTD) is a proactive defense mechanism of changing the attack surface to increase an attacker's confusion and/or uncertainty, which invalidates its intelligence gained through reconnaissance and/or network scanning attacks. In this work, we propose software-defined networking (SDN)-based MTD technique using the shuffling of IP addresses and port numbers aiming to obfuscate both network and transport layers' real identities of the host and the service for defending against the network reconnaissance and scanning attacks. We call our proposed MTD technique Random Host and Service Multiplexing, namely RHSM. RHSM allows each host to use random, multiple virtual IP addresses to be dynamically and periodically shuffled. In addition, it uses short-lived, multiple virtual port numbers for an active service running on the host. Our proposed RHSM is novel in that we employ multiplexing (or de-multiplexing) to dynamically change and remap from all the virtual IPs of the host to the real IP or the virtual ports of the services to the real port, respectively. Via extensive simulation experiments, we prove how effectively and efficiently RHSM outperforms a baseline counterpart (i.e., a static network without RHSM) in terms of the attack success probability and defense cost.
In recent years, the spreading of malicious social media messages about financial stocks has threatened the security of financial market. Market Anomaly Attacks is an illegal practice in the stock or commodities markets that induces investors to make purchase or sale decisions based on false information. Identifying these threats from noisy social media datasets remains challenging because of the long time sequence in these social media postings, ambiguous textual context and the difficulties for traditional deep learning approaches to handle both temporal and text dependent data such as financial social media messages. This research developed a temporal recurrent neural network (TRNN) approach to capturing both time and text sequence dependencies for intelligent detection of market anomalies. We tested the approach by using financial social media of U.S. technology companies and their stock returns. Compared with traditional neural network approaches, TRNN was found to more efficiently and effectively classify abnormal returns.
Conventional methods for anomaly detection include techniques based on clustering, proximity or classification. With the rapidly growing social networks, outliers or anomalies find ingenious ways to obscure themselves in the network and making the conventional techniques inefficient. In this paper, we utilize the ability of Deep Learning over topological characteristics of a social network to detect anomalies in email network and twitter network. We present a model, Graph Neural Network, which is applied on social connection graphs to detect anomalies. The combinations of various social network statistical measures are taken into account to study the graph structure and functioning of the anomalous nodes by employing deep neural networks on it. The hidden layer of the neural network plays an important role in finding the impact of statistical measure combination in anomaly detection.
The growing complexity and diversification of cyber-attacks are largely reflected in the increasing sophistication of security appliances, which are often too cumbersome to be run in virtual services and IoT devices. Hence, the design of cyber-security frameworks is today looking at more cooperative models, which collect security-related data from a large set of heterogeneous sources for centralized analysis and correlation.In this paper, we outline a flexible abstraction layer for access to security context. It is conceived to program and gather data from lightweight inspection and enforcement hooks deployed in cloud applications and IoT devices. We also provide a preliminary description of its implementation, by reviewing the main software components and their role.
Software has become an essential component of modern life, but when software vulnerabilities threaten the security of users, new ways of analyzing for software security must be explored. Using the National Institute of Standards and Technology's Juliet Java Suite, containing thousands of examples of defective Java methods for a variety of vulnerabilities, a prototype tool was developed implementing an array of Long-Short Term Memory Recurrent Neural Networks to detect vulnerabilities within source code. The tool employs various data preparation methods to be independent of coding style and to automate the process of extracting methods, labeling data, and partitioning the dataset. The result is a prototype command-line utility that generates an n-dimensional vulnerability prediction vector. The experimental evaluation using 44,495 test cases indicates that the tool can achieve an accuracy higher than 90% for 24 out of 29 different types of CWE vulnerabilities.
The borderless, dynamic, high dimensional and virtual natures of cyberspace have brought unprecedented hard situation for defenders. To fight uncertain challenges in versatile cyberspace, a security framework based on the cloud computing platform that facilitates containerization technology to create a security capability pool to generate and distribute security payload according to system needs. Composed by four subsystems of the security decision center, the image and container library, the decision rule base and the security event database, this framework distills structured knowledge from aggregated security events and then deliver security load to the managed network or terminal nodes directed by the decision center. By introducing such unified and standardized top-level security framework that is decomposable, combinable and configurable in a service-oriented manner, it could offer flexibility and effectiveness in reconstructing security resource allocation and usage to reach higher efficiency.
Industrial Internet of Things (IIoT) is a fusion of industrial automation systems and IoT systems. It features comprehensive sensing, interconnected transmission, intelligent processing, self-organization and self-maintenance. Its applications span intelligent transportation, smart factories, and intelligence. Many areas such as power grid and intelligent environment detection. With the widespread application of IIoT technology, the cyber security threats to industrial IoT systems are increasing day by day, and information security issues have become a major challenge in the development process. In order to protect the industrial IoT system from network attacks, this paper aims to study the industrial IoT information security protection technology, and the typical architecture of industrial Internet of things system, and analyzes the network security threats faced by industrial Internet of things system according to the different levels of the architecture, and designs the security protection strategies applied to different levels of structures based on the specific means of network attack.