Visible to the public Biblio

Found 3226 results

Filters: First Letter Of Last Name is C  [Clear All Filters]
2023-02-03
Halabi, Talal, Abusitta, Adel, Carvalho, Glaucio H.S., Fung, Benjamin C. M..  2022.  Incentivized Security-Aware Computation Offloading for Large-Scale Internet of Things Applications. 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech). :1–6.

With billions of devices already connected to the network's edge, the Internet of Things (IoT) is shaping the future of pervasive computing. Nonetheless, IoT applications still cannot escape the need for the computing resources available at the fog layer. This becomes challenging since the fog nodes are not necessarily secure nor reliable, which widens even further the IoT threat surface. Moreover, the security risk appetite of heterogeneous IoT applications in different domains or deploy-ment contexts should not be assessed similarly. To respond to this challenge, this paper proposes a new approach to optimize the allocation of secure and reliable fog computing resources among IoT applications with varying security risk level. First, the security and reliability levels of fog nodes are quantitatively evaluated, and a security risk assessment methodology is defined for IoT services. Then, an online, incentive-compatible mechanism is designed to allocate secure fog resources to high-risk IoT offloading requests. Compared to the offline Vickrey auction, the proposed mechanism is computationally efficient and yields an acceptable approximation of the social welfare of IoT devices, allowing to attenuate security risk within the edge network.

Sicari, Christian, Catalfamo, Alessio, Galletta, Antonino, Villari, Massimo.  2022.  A Distributed Peer to Peer Identity and Access Management for the Osmotic Computing. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :775–781.
Nowadays Osmotic Computing is emerging as one of the paradigms used to guarantee the Cloud Continuum, and this popularity is strictly related to the capacity to embrace inside it some hot topics like containers, microservices, orchestration and Function as a Service (FaaS). The Osmotic principle is quite simple, it aims to create a federated heterogeneous infrastructure, where an application's components can smoothly move following a concentration rule. In this work, we aim to solve two big constraints of Osmotic Computing related to the incapacity to manage dynamic access rules for accessing the applications inside the Osmotic Infrastructure and the incapacity to keep alive and secure the access to these applications even in presence of network disconnections. For overcoming these limits we designed and implemented a new Osmotic component, that acts as an eventually consistent distributed peer to peer access management system. This new component is used to keep a local Identity and Access Manager (IAM) that permits at any time to access the resource available in an Osmotic node and to update the access rules that allow or deny access to hosted applications. This component has been already integrated inside a Kubernetes based Osmotic Infrastructure and we presented two typical use cases where it can be exploited.
Ahmed, Shamim, Biswas, Milon, Hasanuzzaman, Md., Nayeen Mahi, Md. Julkar, Ashraful Islam, Md., Chaki, Sudipto, Gaur, Loveleen.  2022.  A Secured Peer-to-Peer Messaging System Based on Blockchain. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :332–337.
Nowadays, the messaging system is one of the most popular mobile applications, and therefore the authentication between clients is essential. Various kinds of such mobile applications are using encryption-based security protocols, but they are facing many security threat issues. It clearly defines the necessity for a trustful security procedure. Therefore, a blockchain-based messaging system could be an alternative to this problem. That is why, we have developed a secured peer-to-peer messaging system supported by blockchain. This proposed mechanism provides data security among the users. In a blockchain-based framework, all the information can be verified and controlled automatically and all the transactions are recorded that have been created already. In our paper, we have explained how the users can communicate through a blockchain-based messaging system that can maintain a secured network. We explored why blockchain would improve communication security in this post, and we proposed a model architecture for blockchain-based messaging that retains the performance and security of data stored on the blockchain. Our proposed architecture is completely decentralized and enables users to send and receive messages in an acceptable and secure manner.
Choudhry, Mahipal Singh, Jetli, Vaibhav, Mathur, Siddhant, Saini, Yash.  2022.  A Review on Behavioural Biometric Authentication. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1–6.

With the advent of technology and owing to mankind’s reliance on technology, it is of utmost importance to safeguard people’s data and their identity. Biometrics have for long played an important role in providing that layer of security ranging from small scale uses such as house locks to enterprises using them for confidentiality purposes. In this paper we will provide an insight into behavioral biometrics that rely on identifying and measuring human characteristics or behavior. We review different types of behavioral parameters such as keystroke dynamics, gait, footstep pressure signals and more.

Doshi, Om B., Bendale, Hitesh N., Chavan, Aarti M., More, Shraddha S..  2022.  A Smart Door Lock Security System using Internet of Things. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :1457–1463.
Security is a key concern across the world, and it has been a common thread for all critical sectors. Nowadays, it may be stated that security is a backbone that is absolutely necessary for personal safety. The most important requirements of security systems for individuals are protection against theft and trespassing. CCTV cameras are often employed for security purposes. The biggest disadvantage of CCTV cameras is their high cost and the need for a trustworthy individual to monitor them. As a result, a solution that is both easy and cost-effective, as well as secure has been devised. The smart door lock is built on Raspberry Pi technology, and it works by capturing a picture through the Pi Camera module, detecting a visitor's face, and then allowing them to enter. Local binary pattern approach is used for Face recognition. Remote picture viewing, notification, on mobile device are all possible with an IOT based application. The proposed system may be installed at front doors, lockers, offices, and other locations where security is required. The proposed system has an accuracy of 89%, with an average processing time is 20 seconds for the overall process.
Talukdar, Jonti, Chaudhuri, Arjun, Chakrabarty, Krishnendu.  2022.  TaintLock: Preventing IP Theft through Lightweight Dynamic Scan Encryption using Taint Bits. 2022 IEEE European Test Symposium (ETS). :1–6.
We propose TaintLock, a lightweight dynamic scan data authentication and encryption scheme that performs per-pattern authentication and encryption using taint and signature bits embedded within the test pattern. To prevent IP theft, we pair TaintLock with truly random logic locking (TRLL) to ensure resilience against both Oracle-guided and Oracle-free attacks, including scan deobfuscation attacks. TaintLock uses a substitution-permutation (SP) network to cryptographically authenticate each test pattern using embedded taint and signature bits. It further uses cryptographically generated keys to encrypt scan data for unauthenticated users dynamically. We show that it offers a low overhead, non-intrusive secure scan solution without impacting test coverage or test time while preventing IP theft.
ISSN: 1558-1780
Halisdemir, Maj. Emre, Karacan, Hacer, Pihelgas, Mauno, Lepik, Toomas, Cho, Sungbaek.  2022.  Data Quality Problem in AI-Based Network Intrusion Detection Systems Studies and a Solution Proposal. 2022 14th International Conference on Cyber Conflict: Keep Moving! (CyCon). 700:367–383.
Network Intrusion Detection Systems (IDSs) have been used to increase the level of network security for many years. The main purpose of such systems is to detect and block malicious activity in the network traffic. Researchers have been improving the performance of IDS technology for decades by applying various machine-learning techniques. From the perspective of academia, obtaining a quality dataset (i.e. a sufficient amount of captured network packets that contain both malicious and normal traffic) to support machine learning approaches has always been a challenge. There are many datasets publicly available for research purposes, including NSL-KDD, KDDCUP 99, CICIDS 2017 and UNSWNB15. However, these datasets are becoming obsolete over time and may no longer be adequate or valid to model and validate IDSs against state-of-the-art attack techniques. As attack techniques are continuously evolving, datasets used to develop and test IDSs also need to be kept up to date. Proven performance of an IDS tested on old attack patterns does not necessarily mean it will perform well against new patterns. Moreover, existing datasets may lack certain data fields or attributes necessary to analyse some of the new attack techniques. In this paper, we argue that academia needs up-to-date high-quality datasets. We compare publicly available datasets and suggest a way to provide up-to-date high-quality datasets for researchers and the security industry. The proposed solution is to utilize the network traffic captured from the Locked Shields exercise, one of the world’s largest live-fire international cyber defence exercises held annually by the NATO CCDCOE. During this three-day exercise, red team members consisting of dozens of white hackers selected by the governments of over 20 participating countries attempt to infiltrate the networks of over 20 blue teams, who are tasked to defend a fictional country called Berylia. After the exercise, network packets captured from each blue team’s network are handed over to each team. However, the countries are not willing to disclose the packet capture (PCAP) files to the public since these files contain specific information that could reveal how a particular nation might react to certain types of cyberattacks. To overcome this problem, we propose to create a dedicated virtual team, capture all the traffic from this team’s network, and disclose it to the public so that academia can use it for unclassified research and studies. In this way, the organizers of Locked Shields can effectively contribute to the advancement of future artificial intelligence (AI) enabled security solutions by providing annual datasets of up-to-date attack patterns.
ISSN: 2325-5374
Gong, Yi, Chen, Minjie, Song, Lihua, Guo, Yanfei.  2022.  Study on the classification model of lock mechanism in operating system. 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA). :857–861.
Lock design is an important mechanism for scheduling management and security protection in operating systems. However, there is no effective way to identify the differences and connections among lock models, and users need to spend considerable time to understand different lock architectures. In this paper, we propose a classification scheme that abstracts lock design into three types of models: basic spinlock, semaphore amount extension, lock chain structure, and verify the effectiveness of these three types of lock models in the context of current mainstream applications. We also investigate the specific details of applying this classification method, which can be used as a reference for developers to design lock models, thus shorten the software development cycle.
Zhu, Feng, Shen, Peisong, Chen, Kaini, Ma, Yucheng, Chen, Chi.  2022.  A Secure and Practical Sample-then-lock Scheme for Iris Recognition. 2022 26th International Conference on Pattern Recognition (ICPR). :833–839.
Sample-then-lock construction is a reusable fuzzy extractor for low-entropy sources. When applied on iris recognition scenarios, many subsets of an iris-code are used to lock the cryptographic key. The security of this construction relies on the entropy of subsets of iris codes. Simhadri et al. reported a security level of 32 bits on iris sources. In this paper, we propose two kinds of attacks to crack existing sample-then-lock schemes. Exploiting the low-entropy subsets, our attacks can break the locked key and the enrollment iris-code respectively in less than 220 brute force attempts. To protect from these proposed attacks, we design an improved sample-then-lock scheme. More precisely, our scheme employs stability and discriminability to select high-entropy subsets to lock the genuine secret, and conceals genuine locker by a large amount of chaff lockers. Our experiment verifies that existing schemes are vulnerable to the proposed attacks with a security level of less than 20 bits, while our scheme can resist these attacks with a security level of more than 100 bits when number of genuine subsets is 106.
ISSN: 2831-7475
Saha, Akashdeep, Chatterjee, Urbi, Mukhopadhyay, Debdeep, Chakraborty, Rajat Subhra.  2022.  DIP Learning on CAS-Lock: Using Distinguishing Input Patterns for Attacking Logic Locking. 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). :688–693.
The globalization of the integrated circuit (IC) manufacturing industry has lured the adversary to come up with numerous malicious activities in the IC supply chain. Logic locking has risen to prominence as a proactive defense strategy against such threats. CAS-Lock (proposed in CHES'20), is an advanced logic locking technique that harnesses the concept of single-point function in providing SAT-attack resiliency. It is claimed to be powerful and efficient enough in mitigating existing state-of-the-art attacks against logic locking techniques. Despite the security robustness of CAS-Lock as claimed by the authors, we expose a serious vulnerability and by exploiting the same we devise a novel attack algorithm against CAS-Lock. The proposed attack can not only reveal the correct key but also the exact AND/OR structure of the implemented CAS-Lock design along with all the key gates utilized in both the blocks of CAS-Lock. It simply relies on the externally observable Distinguishing Input Patterns (DIPs) pertaining to a carefully chosen key simulation of the locked design without the requirement of structural analysis of any kind of the locked netlist. Our attack is successful against various AND/OR cascaded-chain configurations of CAS-Lock and reports 100% success rate in recovering the correct key. It has an attack complexity of \$\textbackslashmathcalO(m)\$, where \$m\$ denotes the number of DIPs obtained for an incorrect key simulation.
ISSN: 1558-1101
Feng, Jinliu, Wang, Yaofei, Chen, Kejiang, Zhang, Weiming, Yu, Nenghai.  2022.  An Effective Steganalysis for Robust Steganography with Repetitive JPEG Compression. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3084–3088.
With the development of social networks, traditional covert communication requires more consideration of lossy processes of Social Network Platforms (SNPs), which is called robust steganography. Since JPEG compression is a universal processing of SNPs, a method using repeated JPEG compression to fit transport channel matching is recently proposed and shows strong compression-resist performance. However, the repeated JPEG compression will inevitably introduce other artifacts into the stego image. Using only traditional steganalysis methods does not work well towards such robust steganography under low payload. In this paper, we propose a simple and effective method to detect the mentioned steganography by chasing both steganographic perturbations as well as continuous compression artifacts. We introduce compression-forensic features as a complement to steganalysis features, and then use the ensemble classifier for detection. Experiments demonstrate that this method owns a similar and better performance with respect to both traditional and neural-network-based steganalysis.
ISSN: 2379-190X
Chakraborty, Joymallya, Majumder, Suvodeep, Tu, Huy.  2022.  Fair-SSL: Building fair ML Software with less data. 2022 IEEE/ACM International Workshop on Equitable Data & Technology (FairWare). :1–8.
Ethical bias in machine learning models has become a matter of concern in the software engineering community. Most of the prior software engineering works concentrated on finding ethical bias in models rather than fixing it. After finding bias, the next step is mitigation. Prior researchers mainly tried to use supervised approaches to achieve fairness. However, in the real world, getting data with trustworthy ground truth is challenging and also ground truth can contain human bias. Semi-supervised learning is a technique where, incrementally, labeled data is used to generate pseudo-labels for the rest of data (and then all that data is used for model training). In this work, we apply four popular semi-supervised techniques as pseudo-labelers to create fair classification models. Our framework, Fair-SSL, takes a very small amount (10%) of labeled data as input and generates pseudo-labels for the unlabeled data. We then synthetically generate new data points to balance the training data based on class and protected attribute as proposed by Chakraborty et al. in FSE 2021. Finally, classification model is trained on the balanced pseudo-labeled data and validated on test data. After experimenting on ten datasets and three learners, we find that Fair-SSL achieves similar performance as three state-of-the-art bias mitigation algorithms. That said, the clear advantage of Fair-SSL is that it requires only 10% of the labeled training data. To the best of our knowledge, this is the first SE work where semi-supervised techniques are used to fight against ethical bias in SE ML models. To facilitate open science and replication, all our source code and datasets are publicly available at https://github.com/joymallyac/FairSSL. CCS CONCEPTS • Software and its engineering → Software creation and management; • Computing methodologies → Machine learning. ACM Reference Format: Joymallya Chakraborty, Suvodeep Majumder, and Huy Tu. 2022. Fair-SSL: Building fair ML Software with less data. In International Workshop on Equitable Data and Technology (FairWare ‘22), May 9, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3524491.3527305
Li, Mingxuan, Li, Feng, Yin, Jun, Fei, Jiaxuan, Chen, Jia.  2022.  Research on Security Vulnerability Mining Technology for Terminals of Electric Power Internet of Things. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1638–1642.
Aiming at the specificity and complexity of the power IoT terminal, a method of power IoT terminal firmware vulnerability detection based on memory fuzzing is proposed. Use the method of bypassing the execution to simulate and run the firmware program, dynamically monitor and control the execution of the firmware program, realize the memory fuzzing test of the firmware program, design an automatic vulnerability exploitability judgment plug-in for rules and procedures, and provide power on this basis The method and specific process of the firmware vulnerability detection of the IoT terminal. The effectiveness of the method is verified by an example.
ISSN: 2693-289X
Chen, Duanyun, Chen, Zewen, Li, Jie, Liu, Jidong.  2022.  Vulnerability analysis of Cyber-physical power system based on Analytic Hierarchy Process. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:2024–2028.
In recent years, the blackout accident shows that the cause of power failure is not only in the power network, but also in the cyber network. Aiming at the problem of cyber network fault Cyber-physical power systems, combined with the structure and functional attributes of cyber network, the comprehensive criticality of information node is defined. By evaluating the vulnerability of ieee39 node system, it is found that the fault of high comprehensive criticality information node will cause greater load loss to the system. The simulation results show that the comprehensive criticality index can effectively identify the key nodes of the cyber network.
ISSN: 2693-2865
Chen, Songlin, Wang, Sijing, Xu, Xingchen, Jiao, Long, Wen, Hong.  2022.  Physical Layer Security Authentication Based Wireless Industrial Communication System for Spoofing Detection. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
Security is of vital importance in wireless industrial communication systems. When spoofing attacking has occurred, leading to economic losses or even safety accidents. So as to address the concern, existing approaches mainly rely on traditional cryptographic algorithms. However, these methods cannot meet the needs of short delay and lightweight. In this paper, we propose a CSI-based PHY-layer security authentication scheme to detect spoofing detection. The main idea takes advantage of the uncorrelated nature of wireless channels to the identification of spoofing nodes in the physical layer. We demonstrate a MIMO-OFDM based spoofing detection prototype in industrial environments. Firstly, utilizing Universal Software Radio Peripheral (USRPs) to establish MIMO-OFDM communication systems is presented. Secondly, our proposed security scheme of CSI-based PHY-layer authentication is demonstrated. Finally, the effectiveness of the proposed approach has been verified via attack experiments.
2023-02-02
Zhang, Yanjun, Zhao, Peng, Han, Ziyang, Yang, Luyu, Chen, Junrui.  2022.  Low Frequency Oscillation Mode Identification Algorithm Based on VMD Noise Reduction and Stochastic Subspace Method. 2022 Power System and Green Energy Conference (PSGEC). :848–852.
Low-frequency oscillation (LFO) is a security and stability issue that the power system focuses on, measurement data play an important role in online monitoring and analysis of low-frequency oscillation parameters. Aiming at the problem that the measurement data containing noise affects the accuracy of modal parameter identification, a VMD-SSI modal identification algorithm is proposed, which uses the variational modal decomposition algorithm (VMD) for noise reduction combined with the stochastic subspace algorithm for identification. The VMD algorithm decomposes and reconstructs the initial signal with certain noise, and filters out the noise signal. Then, the optimized signal is input into stochastic subspace identification algorithm(SSI), the modal parameters is obtained. Simulation of a three-machine ninenode system verifies that the VMD-SSI mode identification algorithm has good anti-noise performance.
Chiari, Michele, De Pascalis, Michele, Pradella, Matteo.  2022.  Static Analysis of Infrastructure as Code: a Survey. 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C). :218–225.
The increasing use of Infrastructure as Code (IaC) in DevOps leads to benefits in speed and reliability of deployment operation, but extends to infrastructure challenges typical of software systems. IaC scripts can contain defects that result in security and reliability issues in the deployed infrastructure: techniques for detecting and preventing them are needed. We analyze and survey the current state of research in this respect by conducting a literature review on static analysis techniques for IaC. We describe analysis techniques, defect categories and platforms targeted by tools in the literature.
2023-01-20
Yao, Jiming, Wu, Peng, Chen, Duanyun, Wang, Wei, Fang, Youxu.  2022.  A security scheme for network slicing selection based on Pohlig-Hellman algorithm in smart grid. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:906—910.
5G has significantly facilitated the development of attractive applications such as autonomous driving and telemedicine due to its lower latency, higher data rates, and enormous connectivity. However, there are still some security and privacy issues in 5G, such as network slicing privacy and flexibility and efficiency of network slicing selection. In the smart grid scenario, this paper proposes a 5G slice selection security scheme based on the Pohlig-Hellman algorithm, which realizes the protection of slice selection privacy data between User i(Ui) and Access and Mobility Management function (AMF), so that the data will not be exposed to third-party attackers. Compared with other schemes, the scheme proposed in this paper is simple in deployment, low in computational overhead, and simple in process, and does not require the help of PKI system. The security analysis also verifies that the scheme can accurately protect the slice selection privacy data between Ui and AMF.
Choudhary, Sachin, Kumar, Abhimanyu, Kumar, Krishan.  2022.  An Efficient Key Agreement Protocol for Smart Grid communication. 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET). :1—5.
Integration of technology with power grid emerged Smart grid. The advancement of power grid into smart grid faces some security issues like message mod-ification attacks, message injection attacks etc. If these issues are correctly not addressed, then the performance of the smart grid is degraded. Smart grid has bidirectional communication among the smart grid entities. The flow of user energy consumption information between all smart grid entities may lead the user privacy violation. Smart grids have various components but service providers and smart meters are the main components. Smart meters have sensing and communication functionality, while service providers have control and communication functionality. There are many privacy preservation schemes proposed that ensure the cus-tomer's privacy in the smart grid. To preserve the customer's data privacy and communication, authentication and key agreement schemes are required between the smart meter and the service provider. This paper proposes an efficient key agreement protocol to handle several security challenges in smart grid. The proposed protocol is tested against the various security attributes necessary for a key establishment protocol and found safe. Further the performance of the proposed work is compared with several others existing work for smart grid application and it has been observed that the proposed protocol performs significantly better than the existing protocols available in the literature.
Raptis, Theofanis P., Cicconetti, Claudio, Falelakis, Manolis, Kanellos, Tassos, Lobo, Tomás Pariente.  2022.  Design Guidelines for Apache Kafka Driven Data Management and Distribution in Smart Cities. 2022 IEEE International Smart Cities Conference (ISC2). :1–7.
Smart city management is going through a remarkable transition, in terms of quality and diversity of services provided to the end-users. The stakeholders that deliver pervasive applications are now able to address fundamental challenges in the big data value chain, from data acquisition, data analysis and processing, data storage and curation, and data visualisation in real scenarios. Industry 4.0 is pushing this trend forward, demanding for servitization of products and data, also for the smart cities sector where humans, sensors and devices are operating in strict collaboration. The data produced by the ubiquitous devices must be processed quickly to allow the implementation of reactive services such as situational awareness, video surveillance and geo-localization, while always ensuring the safety and privacy of involved citizens. This paper proposes a modular architecture to (i) leverage innovative technologies for data acquisition, management and distribution (such as Apache Kafka and Apache NiFi), (ii) develop a multi-layer engineering solution for revealing valuable and hidden societal knowledge in smart cities environment, and (iii) tackle the main issues in tasks involving complex data flows and provide general guidelines to solve them. We derived some guidelines from an experimental setting performed together with leading industrial technical departments to accomplish an efficient system for monitoring and servitization of smart city assets, with a scalable platform that confirms its usefulness in numerous smart city use cases with different needs.
Alanzi, Mataz, Challa, Hari, Beleed, Hussain, Johnson, Brian K., Chakhchoukh, Yacine, Reen, Dylan, Singh, Vivek Kumar, Bell, John, Rieger, Craig, Gentle, Jake.  2022.  Synchrophasors-based Master State Awareness Estimator for Cybersecurity in Distribution Grid: Testbed Implementation & Field Demonstration. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
The integration of distributed energy resources (DERs) and expansion of complex network in the distribution grid requires an advanced two-level state estimator to monitor the grid health at micro-level. The distribution state estimator will improve the situational awareness and resiliency of distributed power system. This paper implements a synchrophasors-based master state awareness (MSA) estimator to enhance the cybersecurity in distribution grid by providing a real-time estimation of system operating states to control center operators. In this paper, the implemented MSA estimator utilizes only phasor measurements, bus magnitudes and angles, from phasor measurement units (PMUs), deployed in local substations, to estimate the system states and also detects data integrity attacks, such as load tripping attack that disconnects the load. To validate the proof of concept, we implement this methodology in cyber-physical testbed environment at the Idaho National Laboratory (INL) Electric Grid Security Testbed. Further, to address the "valley of death" and support technology commercialization, field demonstration is also performed at the Critical Infrastructure Test Range Complex (CITRC) at the INL. Our experimental results reveal a promising performance in detecting load tripping attack and providing an accurate situational awareness through an alert visualization dashboard in real-time.
Dey, Arnab, Chakraborty, Soham, Salapaka, Murti V..  2022.  An End-to-End Cyber-Physical Infrastructure for Smart Grid Control and Monitoring. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
In this article, we propose a generic cyber-physical framework, developed in our laboratory, for smart grid control and monitoring in real-time. Our framework is composed of four key elements: (1) system layer which embeds a physical or emulated power system network, (2) data analysis layer to execute real-time data-driven grid analysis algorithms, (3) backend layer with a generic data storage framework which supports multiple databases with functionally different architectures, and (4) visualization layer where multiple customized or commercially available user interfaces can be deployed concurrently for grid control and monitoring. These four layers are interlinked via bidirectional communication channels. Such a flexible and scalable framework provides a cohesive environment to enhance smart grid situational awareness. We demonstrate the utility of our proposed architecture with several case studies where we estimate a modified IEEE-33 bus distribution network topology entirely from synchrophasor measurements, without any prior knowledge of the grid network, and render the same on visualization platform. Three demonstrations are included with single and multiple system operators having complete and partial measurements.
Chinthavali, Supriya, Hasan, S.M.Shamimul, Yoginath, Srikanth, Xu, Haowen, Nugent, Phil, Jones, Terry, Engebretsen, Cozmo, Olatt, Joseph, Tansakul, Varisara, Christopher, Carter et al..  2022.  An Alternative Timing and Synchronization Approach for Situational Awareness and Predictive Analytics. 2022 IEEE 23rd International Conference on Information Reuse and Integration for Data Science (IRI). :172–177.

Accurate and synchronized timing information is required by power system operators for controlling the grid infrastructure (relays, Phasor Measurement Units (PMUs), etc.) and determining asset positions. Satellite-based global positioning system (GPS) is the primary source of timing information. However, GPS disruptions today (both intentional and unintentional) can significantly compromise the reliability and security of our electric grids. A robust alternate source for accurate timing is critical to serve both as a deterrent against malicious attacks and as a redundant system in enhancing the resilience against extreme events that could disrupt the GPS network. To achieve this, we rely on the highly accurate, terrestrial atomic clock-based network for alternative timing and synchronization. In this paper, we discuss an experimental setup for an alternative timing approach. The data obtained from this experimental setup is continuously monitored and analyzed using various time deviation metrics. We also use these metrics to compute deviations of our clock with respect to the National Institute of Standards and Technologys (NIST) GPS data. The results obtained from these metric computations are elaborately discussed. Finally, we discuss the integration of the procedures involved, like real-time data ingestion, metric computation, and result visualization, in a novel microservices-based architecture for situational awareness.

Boni, Mounika, Ch, Tharakeswari, Alamanda, Swathi, Arasada, Bhaskara Venkata Sai Gayath, Maria, Azees.  2022.  An Efficient and Secure Anonymous Authentication Scheme for V2G Networks. 2022 6th International Conference on Devices, Circuits and Systems (ICDCS). :432—436.

The vehicle-to-grid (V2G) network has a clear advantage in terms of economic benefits, and it has grabbed the interest of powergrid and electric vehicle (EV) consumers. Many V2G techniques, at present, for example, use bilinear pairing to execute the authentication scheme, which results in significant computational costs. Furthermore, in the existing V2G techniques, the system master key is issued independently by the third parties, it is vulnerable to leaking if the third party is compromised by an attacker. This paper presents an efficient and secure anonymous authentication scheme for V2G networks to overcome this issue we use a lightweight authentication system for electric vehicles and smart grids. In the proposed technique, the keys are generated by the trusted authority after the successful registration of EVs in the trusted authority and the dispatching center. The suggested scheme not only enhances the verification performance of V2G networks and also protects against inbuilt hackers.

Ghosh, Soumyadyuti, Chatterjee, Urbi, Dey, Soumyajit, Mukhopadhyay, Debdeep.  2022.  Is the Whole lesser than its Parts? Breaking an Aggregation based Privacy aware Metering Algorithm 2022 25th Euromicro Conference on Digital System Design (DSD). :921—929.

Smart metering is a mechanism through which fine-grained electricity usage data of consumers is collected periodically in a smart grid. However, a growing concern in this regard is that the leakage of consumers' consumption data may reveal their daily life patterns as the state-of-the-art metering strategies lack adequate security and privacy measures. Many proposed solutions have demonstrated how the aggregated metering information can be transformed to obscure individual consumption patterns without affecting the intended semantics of smart grid operations. In this paper, we expose a complete break of such an existing privacy preserving metering scheme [10] by determining individual consumption patterns efficiently, thus compromising its privacy guarantees. The underlying methodol-ogy of this scheme allows us to - i) retrieve the lower bounds of the privacy parameters and ii) establish a relationship between the privacy preserved output readings and the initial input readings. Subsequently, we present a rigorous experimental validation of our proposed attacking methodology using real-life dataset to highlight its efficacy. In summary, the present paper queries: Is the Whole lesser than its Parts? for such privacy aware metering algorithms which attempt to reduce the information leakage of aggregated consumption patterns of the individuals.