Sharan, Bhagwati, Chhabra, Megha, Sagar, Anil Kumar.
2022.
State-of-the-art: Data Dissemination Techniques in Vehicular Ad-hoc Networks. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :126—131.
Vehicular Ad-hoc Networks (VANETs) is a very fast emerging research area these days due to their contribution in designing Intelligent transportation systems (ITS). ITS is a well-organized group of wireless networks. It is a derived class of Mobile Ad-hoc Networks (MANETs). VANET is an instant-formed ad-hoc network, due to the mobility of vehicles on the road. The goal of using ITS is to enhance road safety, driving comfort, and traffic effectiveness by alerting the drivers at right time about upcoming dangerous situations, traffic jams, road diverted, weather conditions, real-time news, and entertainment. We can consider Vehicular communication as an enabler for future driverless cars. For these all above applications, it is necessary to make a threat-free environment to establish secure, fast, and efficient communication in VANETs. In this paper, we had discussed the overviews, characteristics, securities, applications, and various data dissemination techniques in VANET.
Casimiro, Maria, Romano, Paolo, Garlan, David, Rodrigues, Luís.
2022.
Towards a Framework for Adapting Machine Learning Components. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). :131—140.
Machine Learning (ML) models are now commonly used as components in systems. As any other component, ML components can produce erroneous outputs that may penalize system utility. In this context, self-adaptive systems emerge as a natural approach to cope with ML mispredictions, through the execution of adaptation tactics such as model retraining. To synthesize an adaptation strategy, the self-adaptation manager needs to reason about the cost-benefit tradeoffs of the applicable tactics, which is a non-trivial task for tactics such as model retraining, whose benefits are both context- and data-dependent.To address this challenge, this paper proposes a probabilistic modeling framework that supports automated reasoning about the cost/benefit tradeoffs associated with improving ML components of ML-based systems. The key idea of the proposed approach is to decouple the problems of (i) estimating the expected performance improvement after retrain and (ii) estimating the impact of ML improved predictions on overall system utility.We demonstrate the application of the proposed framework by using it to self-adapt a state-of-the-art ML-based fraud-detection system, which we evaluate using a publicly-available, real fraud detection dataset. We show that by predicting system utility stemming from retraining a ML component, the probabilistic model checker can generate adaptation strategies that are significantly closer to the optimal, as compared against baselines such as periodic retraining, or reactive retraining.
Nisansala, Sewwandi, Chandrasiri, Gayal Laksara, Prasadika, Sonali, Jayasinghe, Upul.
2022.
Microservice Based Edge Computing Architecture for Internet of Things. 2022 2nd International Conference on Advanced Research in Computing (ICARC). :332—337.
Distributed computation and AI processing at the edge has been identified as an efficient solution to deliver real-time IoT services and applications compared to cloud-based paradigms. These solutions are expected to support the delay-sensitive IoT applications, autonomic decision making, and smart service creation at the edge in comparison to traditional IoT solutions. However, existing solutions have limitations concerning distributed and simultaneous resource management for AI computation and data processing at the edge; concurrent and real-time application execution; and platform-independent deployment. Hence, first, we propose a novel three-layer architecture that facilitates the above service requirements. Then we have developed a novel platform and relevant modules with integrated AI processing and edge computer paradigms considering issues related to scalability, heterogeneity, security, and interoperability of IoT services. Further, each component is designed to handle the control signals, data flows, microservice orchestration, and resource composition to match with the IoT application requirements. Finally, the effectiveness of the proposed platform is tested and have been verified.
Hashmi, Saad Sajid, Dam, Hoa Khanh, Smet, Peter, Chhetri, Mohan Baruwal.
2022.
Towards Antifragility in Contested Environments: Using Adversarial Search to Learn, Predict, and Counter Open-Ended Threats. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). :141—146.
Resilience and antifragility under duress present significant challenges for autonomic and self-adaptive systems operating in contested environments. In such settings, the system has to continually plan ahead, accounting for either an adversary or an environment that may negate its actions or degrade its capabilities. This will involve projecting future states, as well as assessing recovery options, counter-measures, and progress towards system goals. For antifragile systems to be effective, we envision three self-* properties to be of key importance: self-exploration, self-learning and self-training. Systems should be able to efficiently self-explore – using adversarial search – the potential impact of the adversary’s attacks and compute the most resilient responses. The exploration can be assisted by prior knowledge of the adversary’s capabilities and attack strategies, which can be self-learned – using opponent modelling – from previous attacks and interactions. The system can self-train – using reinforcement learning – such that it evolves and improves itself as a result of being attacked. This paper discusses those visions and outlines their realisation in AWaRE, a cyber-resilient and self-adaptive multi-agent system.
Sagar, Maloth, C, Vanmathi.
2022.
Network Cluster Reliability with Enhanced Security and Privacy of IoT Data for Anomaly Detection Using a Deep Learning Model. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). :1670—1677.
Cyber Physical Systems (CPS), which contain devices to aid with physical infrastructure activities, comprise sensors, actuators, control units, and physical objects. CPS sends messages to physical devices to carry out computational operations. CPS mainly deals with the interplay among cyber and physical environments. The real-time network data acquired and collected in physical space is stored there, and the connection becomes sophisticated. CPS incorporates cyber and physical technologies at all phases. Cyber Physical Systems are a crucial component of Internet of Things (IoT) technology. The CPS is a traditional concept that brings together the physical and digital worlds inhabit. Nevertheless, CPS has several difficulties that are likely to jeopardise our lives immediately, while the CPS's numerous levels are all tied to an immediate threat, therefore necessitating a look at CPS security. Due to the inclusion of IoT devices in a wide variety of applications, the security and privacy of users are key considerations. The rising level of cyber threats has left current security and privacy procedures insufficient. As a result, hackers can treat every person on the Internet as a product. Deep Learning (DL) methods are therefore utilised to provide accurate outputs from big complex databases where the outputs generated can be used to forecast and discover vulnerabilities in IoT systems that handles medical data. Cyber-physical systems need anomaly detection to be secure. However, the rising sophistication of CPSs and more complex attacks means that typical anomaly detection approaches are unsuitable for addressing these difficulties since they are simply overwhelmed by the volume of data and the necessity for domain-specific knowledge. The various attacks like DoS, DDoS need to be avoided that impact the network performance. In this paper, an effective Network Cluster Reliability Model with enhanced security and privacy levels for the data in IoT for Anomaly Detection (NSRM-AD) using deep learning model is proposed. The security levels of the proposed model are contrasted with the proposed model and the results represent that the proposed model performance is accurate
Cody, Tyler, Adams, Stephen, Beling, Peter, Freeman, Laura.
2022.
On Valuing the Impact of Machine Learning Faults to Cyber-Physical Production Systems. 2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS). :1—6.
Machine learning (ML) has been applied in prognostics and health management (PHM) to monitor and predict the health of industrial machinery. The use of PHM in production systems creates a cyber-physical, omni-layer system. While ML offers statistical improvements over previous methods, and brings statistical models to bear on new systems and PHM tasks, it is susceptible to performance degradation when the behavior of the systems that ML is receiving its inputs from changes. Natural changes such as physical wear and engineered changes such as maintenance and rebuild procedures are catalysts for performance degradation, and are both inherent to production systems. Drawing from data on the impact of maintenance procedures on ML performance in hydraulic actuators, this paper presents a simulation study that investigates how long it takes for ML performance degradation to create a difference in the throughput of serial production system. In particular, this investigation considers the performance of an ML model learned on data collected before a rebuild procedure is conducted on a hydraulic actuator and an ML model transfer learned on data collected after the rebuild procedure. Transfer learning is able to mitigate performance degradation, but there is still a significant impact on throughput. The conclusion is drawn that ML faults can have drastic, non-linear effects on the throughput of production systems.
He, Song, Shi, Xiaohong, Huang, Yan, Chen, Gong, Tang, Huihui.
2022.
Design of Information System Security Evaluation Management System based on Artificial Intelligence. 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI). :967—970.
In today's society, with the continuous development of artificial intelligence, artificial intelligence technology plays an increasingly important role in social and economic development, and hass become the fastest growing, most widely used and most influential high-tech in the world today one. However, at the same time, information technology has also brought threats to network security to the entire network world, which makes information systems also face huge and severe challenges, which will affect the stability and development of society to a certain extent. Therefore, comprehensive analysis and research on information system security is a very necessary and urgent task. Through the security assessment of the information system, we can discover the key hidden dangers and loopholes that are hidden in the information source or potentially threaten user data and confidential files, so as to effectively prevent these risks from occurring and provide effective solutions; at the same time To a certain extent, prevent virus invasion, malicious program attacks and network hackers' intrusive behaviors. This article adopts the experimental analysis method to explore how to apply the most practical, advanced and efficient artificial intelligence theory to the information system security assessment management, so as to further realize the optimal design of the information system security assessment management system, which will protect our country the information security has very important meaning and practical value. According to the research results, the function of the experimental test system is complete and available, and the security is good, which can meet the requirements of multi-user operation for security evaluation of the information system.