Visible to the public Biblio

Found 3226 results

Filters: First Letter Of Last Name is C  [Clear All Filters]
2022-11-08
Mode, Gautam Raj, Calyam, Prasad, Hoque, Khaza Anuarul.  2020.  Impact of False Data Injection Attacks on Deep Learning Enabled Predictive Analytics. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–7.
Industry 4.0 is the latest industrial revolution primarily merging automation with advanced manufacturing to reduce direct human effort and resources. Predictive maintenance (PdM) is an industry 4.0 solution, which facilitates predicting faults in a component or a system powered by state-of-the- art machine learning (ML) algorithms (especially deep learning algorithms) and the Internet-of-Things (IoT) sensors. However, IoT sensors and deep learning (DL) algorithms, both are known for their vulnerabilities to cyber-attacks. In the context of PdM systems, such attacks can have catastrophic consequences as they are hard to detect due to the nature of the attack. To date, the majority of the published literature focuses on the accuracy of DL enabled PdM systems and often ignores the effect of such attacks. In this paper, we demonstrate the effect of IoT sensor attacks (in the form of false data injection attack) on a PdM system. At first, we use three state-of-the-art DL algorithms, specifically, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Convolutional Neural Network (CNN) for predicting the Remaining Useful Life (RUL) of a turbofan engine using NASA's C-MAPSS dataset. The obtained results show that the GRU-based PdM model outperforms some of the recent literature on RUL prediction using the C-MAPSS dataset. Afterward, we model and apply two different types of false data injection attacks (FDIA), specifically, continuous and interim FDIAs on turbofan engine sensor data and evaluate their impact on CNN, LSTM, and GRU-based PdM systems. The obtained results demonstrate that FDI attacks on even a few IoT sensors can strongly defect the RUL prediction in all cases. However, the GRU-based PdM model performs better in terms of accuracy and resiliency to FDIA. Lastly, we perform a study on the GRU-based PdM model using four different GRU networks with different sequence lengths. Our experiments reveal an interesting relationship between the accuracy, resiliency and sequence length for the GRU-based PdM models.
HeydariGorji, Ali, Rezaei, Siavash, Torabzadehkashi, Mahdi, Bobarshad, Hossein, Alves, Vladimir, Chou, Pai H..  2020.  HyperTune: Dynamic Hyperparameter Tuning for Efficient Distribution of DNN Training Over Heterogeneous Systems. 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). :1–8.
Distributed training is a novel approach to accelerating training of Deep Neural Networks (DNN), but common training libraries fall short of addressing the distributed nature of heterogeneous processors or interruption by other workloads on the shared processing nodes. This paper describes distributed training of DNN on computational storage devices (CSD), which are NAND flash-based, high-capacity data storage with internal processing engines. A CSD-based distributed architecture incorporates the advantages of federated learning in terms of performance scalability, resiliency, and data privacy by eliminating the unnecessary data movement between the storage device and the host processor. The paper also describes Stannis, a DNN training framework that improves on the shortcomings of existing distributed training frameworks by dynamically tuning the training hyperparameters in heterogeneous systems to maintain the maximum overall processing speed in term of processed images per second and energy efficiency. Experimental results on image classification training benchmarks show up to 3.1x improvement in performance and 2.45x reduction in energy consumption when using Stannis plus CSD compare to the generic systems.
Wei, Yijie, Cao, Qiankai, Gu, Jie, Otseidu, Kofi, Hargrove, Levi.  2020.  A Fully-integrated Gesture and Gait Processing SoC for Rehabilitation with ADC-less Mixed-signal Feature Extraction and Deep Neural Network for Classification and Online Training. 2020 IEEE Custom Integrated Circuits Conference (CICC). :1–4.
An ultra-low-power gesture and gait classification SoC is presented for rehabilitation application featuring (1) mixed-signal feature extraction and integrated low-noise amplifier eliminating expensive ADC and digital feature extraction, (2) an integrated distributed deep neural network (DNN) ASIC supporting a scalable multi-chip neural network for sensor fusion with distortion resiliency for low-cost front end modules, (3) onchip learning of DNN engine allowing in-situ training of user specific operations. A 12-channel 65nm CMOS test chip was fabricated with 1μW power per channel, less than 3ms computation latency, on-chip training for user-specific DNN model and multi-chip networking capability.
2022-11-02
Costa, Cliona J, Tiwari, Stuti, Bhagat, Krishna, Verlekar, Akash, Kumar, K M Chaman, Aswale, Shailendra.  2021.  Three-Dimensional Reconstruction of Satellite images using Generative Adversarial Networks. 2021 International Conference on Technological Advancements and Innovations (ICTAI). :121–126.
3D reconstruction has piqued the interest of many disciplines, and many researchers have spent the last decade striving to improve on latest automated three-dimensional reconstruction systems. Three Dimensional models can be utilized to tackle a wide range of visualization problems as well as other activities. In this paper, we have implemented a method of Digital Surface Map (DSM) generation from Aerial images using Conditional Generative Adversarial Networks (c-GAN). We have used Seg-net architecture of Convolutional Neural Network (CNN) to segment the aerial images and then the U-net generator of c-GAN generates final DSM. The dataset we used is ISPRS Potsdam-Vaihingen dataset. We also review different stages if 3D reconstruction and how Deep learning is now being widely used to enhance the process of 3D data generation. We provide binary cross entropy loss function graph to demonstrate stability of GAN and CNN. The purpose of our approach is to solve problem of DSM generation using Deep learning techniques. We put forth our method against other latest methods of DSM generation such as Semi-global Matching (SGM) and infer the pros and cons of our approach. Finally, we suggest improvements in our methods that might be useful in increasing the accuracy.
Zhao, Li, Jiao, Yan, Chen, Jie, Zhao, Ruixia.  2021.  Image Style Transfer Based on Generative Adversarial Network. 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA). :191–195.
Image style transfer refers to the transformation of the style of image, so that the image details are retained to the maximum extent while the style is transferred. Aiming at the problem of low clarity of style transfer images generated by CycleGAN network, this paper improves the CycleGAN network. In this paper, the network model of auto-encoder and variational auto-encoder is added to the structure. The encoding part of the auto-encoder is used to extract image content features, and the variational auto-encoder is used to extract style features. At the same time, the generating network of the model in this paper uses first to adjust the image size and then perform the convolution operation to replace the traditional deconvolution operation. The discriminating network uses a multi-scale discriminator to force the samples generated by the generating network to be more realistic and approximate the target image, so as to improve the effect of image style transfer.
2022-10-20
Chen, Wenhao, Lin, Li, Newman, Jennifer, Guan, Yong.  2021.  Automatic Detection of Android Steganography Apps via Symbolic Execution and Tree Matching. 2021 IEEE Conference on Communications and Network Security (CNS). :254—262.
The recent focus of cyber security on automated detection of malware for Android apps has omitted the study of some apps used for “legitimate” purposes, such as steganography apps. Mobile steganography apps can be used for delivering harmful messages, and while current research on steganalysis targets the detection of stego images using academic algorithms and well-built benchmarking image data sets, the community has overlooked uncovering a mobile app itself for its ability to perform steganographic embedding. Developing automatic tools for identifying the code in a suspect app as a stego app can be very challenging: steganography algorithms can be represented in a variety of ways, and there exists many image editing algorithms which appear similar to steganography algorithms.This paper proposes the first automated approach to detect Android steganography apps. We use symbolic execution to summarize an app’s image operation behavior into expression trees, and match the extracted expression trees with reference trees that represents the expected behavior of a steganography embedding process. We use a structural feature based similarity measure to calculate the similarity between expression trees. Our experiments show that, the propose approach can detect real world Android stego apps that implement common spatial domain and frequency domain embedding algorithms with a high degree of accuracy. Furthermore, our procedure describes a general framework that has the potential to be applied to other similar questions when studying program behaviors.
Manikandan, T.T., Sukumaran, Rajeev, Christhuraj, M.R., Saravanan, M..  2020.  Adopting Stochastic Network Calculus as Mathematical Theory for Performance Analysis of Underwater Wireless Communication Networks. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :436—441.
Underwater Wireless Communication Network (UWCN) is highly emerging in recent times due to the broad variety of underwater applications ranging from disaster prediction, environmental resource monitoring, military security surveillance and assisted navigation. Since the kind of accuracy these applications demands from the dynamic underwater environment is really high, so there is a need for effective way of study underwater communication networks. Usually underwater networks can be studied with the help of actual underwater testbed or with the model of the underwater network. Studying the underwater system with the actual underwater testbed is costly. The effective way of analysis can be done by creating a mathematical model of underwater systems. Queuing theory is one of the most popular mathematical theories used for conventional circuit switched networks whereas it can’t be applied for modeling modern packet switched networks which has high variability compared to that of circuit switched networks. So this paper presents Stochastic Network Calculus (SNC) as the mathematical theory for modeling underwater communication networks. Underlying principles and basic models provided by SNC for analyzing the performance graduates of UWCN is discussed in detail for the benefit of researchers looking for the effective mathematical theory for modeling the system in the domain of underwater communication.
Kang, Hongyue, Liu, Bo, Mišić, Jelena, Mišić, Vojislav B., Chang, Xiaolin.  2020.  Assessing Security and Dependability of a Network System Susceptible to Lateral Movement Attacks. 2020 International Conference on Computing, Networking and Communications (ICNC). :513—517.
Lateral movement attack performs malicious activities by infecting part of a network system first and then moving laterally to the left system in order to compromise more computers. It is widely used in various sophisticated attacks and plays a critical role. This paper aims to quantitatively analyze the transient security and dependability of a critical network system under lateral movement attacks, whose intruding capability increases with the increasing number of attacked computers. We propose a survivability model for capturing the system and adversary behaviors from the time instant of the first intrusion launched from any attacked computer to the other vulnerable computers until defense solution is developed and deployed. Stochastic Reward Nets (SRN) is applied to automatically build and solve the model. The formulas are also derived for calculating the metrics of interest. Simulation is carried out to validate the approximate accuracy of our model and formulas. The quantitative analysis can help network administrators make a trade-off between damage loss and defense cost.
Alizadeh, Mohammad Iman, Usman, Muhammad, Capitanescu, Florin.  2021.  Toward Stochastic Multi-period AC Security Constrained Optimal Power Flow to Procure Flexibility for Managing Congestion and Voltages. 2021 International Conference on Smart Energy Systems and Technologies (SEST). :1—6.
The accelerated penetration rate of renewable energy sources (RES) brings environmental benefits at the expense of increasing operation cost and undermining the satisfaction of the N-1 security criterion. To address the latter issue, this paper extends the state of the art, i.e. deterministic AC security-constrained optimal power flow (SCOPF), to capture two new dimensions: RES stochasticity and inter-temporal constraints of emerging sources of flexibility such as flexible loads (FL) and energy storage systems (ESS). Accordingly, the paper proposes and solves for the first time a new problem formulation in the form of stochastic multi-period AC SCOPF (S-MP-SCOPF). The S-MP-SCOPF is formulated as a non-linear programming (NLP). It computes optimal setpoints in day-ahead operation of flexibility resources and other conventional control means for congestion management and voltage control. Another salient feature of this paper is the comprehensive and accurate modelling: AC power flow model for both pre-contingency and post-contingency states, joint active/reactive power flows, inter-temporal resources such as FL and ESS in a 24-hours time horizon, and RES uncertainties. The applicability of the proposed model is tested on 5-bus (6 contingencies) and 60 bus Nordic32 (33 contingencies) systems.
Châtel, Romain, Mouaddib, Abdel-Illah.  2021.  An augmented MDP approach for solving Stochastic Security Games. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :6405—6410.
We propose a novel theoretical approach for solving a Stochastic Security Game using augmented Markov Decison Processes and an experimental evaluation. Most of the previous works mentioned in the literature focus on Linear Programming techniques seeking Strong Stackelberg Equilibria through the defender and attacker’s strategy spaces. Although effective, these techniques are computationally expensive and tend to not scale well to very large problems. By fixing the set of the possible defense strategies, our approach is able to use the well-known augmented MDP formalism to compute an optimal policy for an attacker facing a defender patrolling. Experimental results on fully observable cases validate our approach and show good performances in comparison with optimistic and pessimistic approaches. However, these results also highlight the need of scalability improvements and of handling the partial observability cases.
Choudhary, Swapna, Dorle, Sanjay.  2021.  Empirical investigation of VANET-based security models from a statistical perspective. 2021 International Conference on Computational Intelligence and Computing Applications (ICCICA). :1—8.
Vehicular ad-hoc networks (VANETs) are one of the most stochastic networks in terms of node movement patterns. Due to the high speed of vehicles, nodes form temporary clusters and shift between clusters rapidly, which limits the usable computational complexity for quality of service (QoS) and security enhancements. Hence, VANETs are one of the most insecure networks and are prone to various attacks like Masquerading, Distributed Denial of Service (DDoS) etc. Various algorithms have been proposed to safeguard VANETs against these attacks, which vary concerning security and QoS performance. These algorithms include linear rule-checking models, software-defined network (SDN) rules, blockchain-based models, etc. Due to such a wide variety of model availability, it becomes difficult for VANET designers to select the most optimum security framework for the network deployment. To reduce the complexity of this selection, the paper reviews statistically investigate a wide variety of modern VANET-based security models. These models are compared in terms of security, computational complexity, application and cost of deployment, etc. which will assist network designers to select the most optimum models for their application. Moreover, the paper also recommends various improvements that can be applied to the reviewed models, to further optimize their performance.
Jiang, Luanjuan, Chen, Xin.  2021.  Understanding the impact of cyber-physical correlation on security analysis of Cyber-Physical Systems. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :529—534.
Cyber-Physical Systems(CPS) have been experiencing a fast-growing process in recent decades, and related security issues also have become more important than ever before. To design an efficient defensive policy for operators and controllers is the utmost task to be considered. In this paper, a stochastic game-theoretic model is developed to study a CPS security problem by considering the interdependence between cyber and physical spaces of a CPS. The game model is solved with Minimax Q-learning for finding the mixed strategies equilibria. The numerical simulation revealed that the defensive factors and attack cost can affect the policies adopted by the system. From the perspective of the operator of a CPS, increasing successful defense probability in the phrase of disruption will help to improve the probability of defense strategy when there is a correlation between the cyber layer and the physical layer in a CPS. On the contrary side, the system defense probability will decrease as the total cost of the physical layer increases.
Wang, Jingyi, Chiang, Nai-Yuan, Petra, Cosmin G..  2021.  An asynchronous distributed-memory optimization solver for two-stage stochastic programming problems. 2021 20th International Symposium on Parallel and Distributed Computing (ISPDC). :33—40.
We present a scalable optimization algorithm and its parallel implementation for two-stage stochastic programming problems of large-scale, particularly the security constrained optimal power flow models routinely used in electrical power grid operations. Such problems can be prohibitively expensive to solve on industrial scale with the traditional methods or in serial. The algorithm decomposes the problem into first-stage and second-stage optimization subproblems which are then scheduled asynchronously for efficient evaluation in parallel. Asynchronous evaluations are crucial in achieving good balancing and parallel efficiency because the second-stage optimization subproblems have highly varying execution times. The algorithm employs simple local second-order approximations of the second-stage optimal value functions together with exact first- and second-order derivatives for the first-stage subproblems to accelerate convergence. To reduce the number of the evaluations of computationally expensive second-stage subproblems required by line search, we devised a flexible mechanism for controlling the step size that can be tuned to improve performance for individual class of problems. The algorithm is implemented in C++ using MPI non-blocking calls to overlap computations with communication and boost parallel efficiency. Numerical experiments of the algorithm are conducted on Summit and Lassen supercomputers at Oak Ridge and Lawrence Livermore National Laboratories and scaling results show good parallel efficiency.
Liu, Bo, Bobbio, Andrea, Bai, Jing, Martinez, Jose, Chang, Xiaolin, Trivedi, Kishor S..  2021.  Transient Security and Dependability Analysis of MEC Micro Datacenter under Attack. 2021 Annual Reliability and Maintainability Symposium (RAMS). :1—7.
SUMMARY & CONCLUSIONSA Multi-access Edge Computing (MEC) micro data center (MEDC) consists of multiple MEC hosts close to endpoint devices. MEC service is delivered by instantiating a virtualization system (e.g., Virtual Machines or Containers) on a MEC host. MEDC faces more new security risks due to various device connections in an open environment. When more and more IoT/CPS systems are connected to MEDC, it is necessary for MEC service providers to quantitatively analyze any security loss and then make defense-related decision. This paper develops a CTMC model for quantitatively analyzing the security and dependability of a vulnerable MEDC system under lateral movement attacks, from the adversary’s initial successful access until the MEDC becomes resistant to the attack. The proposed model captures the behavior of the system in a scenario where (i) the rate of vulnerable MEC servers being infected increases with the increasing number of infected MEC servers, (ii) each infected MEC server can perform its compromising activity independently and randomly, and (iii) any infected MEC may fail and then cannot provide service. We also introduce the formulas for computing metrics. The proposed model and formula are verified to be approximately accurate by comparing numerical results and simulation results.
Castanhel, Gabriel R., Heinrich, Tiago, Ceschin, Fabrício, Maziero, Carlos.  2021.  Taking a Peek: An Evaluation of Anomaly Detection Using System calls for Containers. 2021 IEEE Symposium on Computers and Communications (ISCC). :1—6.
The growth in the use of virtualization in the last ten years has contributed to the improvement of this technology. The practice of implementing and managing this type of isolated environment raises doubts about the security of such systems. Considering the host's proximity to a container, approaches that use anomaly detection systems attempt to monitor and detect unexpected behavior. Our work aims to use system calls to identify threats within a container environment, using machine learning based strategies to distinguish between expected and unexpected behaviors (possible threats).
Larsen, Raphaël M.J.I., Pahl, Marc-Oliver, Coatrieux, Gouenou.  2021.  Authenticating IDS autoencoders using multipath neural networks. 2021 5th Cyber Security in Networking Conference (CSNet). :1—9.
An Intrusion Detection System (IDS) is a core element for securing critical systems. An IDS can use signatures of known attacks, or an anomaly detection model for detecting unknown attacks. Attacking an IDS is often the entry point of an attack against a critical system. Consequently, the security of IDSs themselves is imperative. To secure model-based IDSs, we propose a method to authenticate the anomaly detection model. The anomaly detection model is an autoencoder for which we only have access to input-output pairs. Inputs consist of time windows of values from sensors and actuators of an Industrial Control System. Our method is based on a multipath Neural Network (NN) classifier, a newly proposed deep learning technique. The idea is to characterize errors of an IDS's autoencoder by using a multipath NN's confidence measure \$c\$. We use the Wilcoxon-Mann-Whitney (WMW) test to detect a change in the distribution of the summary variable \$c\$, indicating that the autoencoder is not working properly. We compare our method to two baselines. They consist in using other summary variables for the WMW test. We assess the performance of these three methods using simulated data. Among others, our analysis shows that: 1) both baselines are oblivious to some autoencoder spoofing attacks while 2) the WMW test on a multipath NN's confidence measure enables detecting eventually any autoencoder spoofing attack.
2022-10-16
Song, Xiumin, Liu, Bo, Zhang, Hongxin, Mao, Yaya, Ren, Jianxin, Chen, Shuaidong, Xu, Hui, Zhang, Jingyi, Jiang, Lei, Zhao, Jianye et al..  2020.  Security Enhancing and Probability Shaping Coordinated Optimization for CAP-PON in Physical Layer. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). :1–3.
A secure-enhanced scheme based on deoxyribonucleic acid (DNA) encoding encryption and probabilistic shaping (PS) is proposed. Experimental results verify the superiority of our proposed scheme in the achievement of security and power gain. © 2020 The Author(s).
Chen, Kejin, Yang, Shiwen, Chen, Yikai, Qu, Shi-Wei, Hu, Jun.  2020.  Improving Physical Layer Security Technique Based on 4-D Antenna Arrays with Pre-Modulation. 2020 14th European Conference on Antennas and Propagation (EuCAP). :1–3.
Four-dimensional (4-D) antenna arrays formed by introducing time as the forth controlling variable are able to be used to regulate the radiation fields in space, time and frequency domains. Thus, 4-D antenna arrays are actually the excellent platform for achieving physical layer secure transmission. However, traditional direction modulation technique of 4-D antenna arrays always inevitably leads to higher sidelobe level of radiation pattern or less randomness. Regarding to the problem, this paper proposed a physical layer secure transmission technique based on 4-D antenna arrays, which combine the advantages of traditional phased arrays, and 4-D arrays for improving the physical layer security in wireless networks. This technique is able to reduce the radiated power at sidelobe region by optimizing the time sequences. Moreover, the signal distortion caused by time modulation can be compensated in the desired direction by pre-modulating transmitted signals.
Guo, Zhen, Cho, Jin–Hee.  2021.  Game Theoretic Opinion Models and Their Application in Processing Disinformation. 2021 IEEE Global Communications Conference (GLOBECOM). :01–07.
Disinformation, fake news, and unverified rumors spread quickly in online social networks (OSNs) and manipulate people's opinions and decisions about life events. The solid mathematical solutions of the strategic decisions in OSNs have been provided under game theory models, including multiple roles and features. This work proposes a game-theoretic opinion framework to model subjective opinions and behavioral strategies of attackers, users, and a defender. The attackers use information deception models to disseminate disinformation. We investigate how different game-theoretic opinion models of updating people's subject opinions can influence a way for people to handle disinformation. We compare the opinion dynamics of the five different opinion models (i.e., uncertainty, homophily, assertion, herding, and encounter-based) where an opinion is formulated based on Subjective Logic that offers the capability to deal with uncertain opinions. Via our extensive experiments, we observe that the uncertainty-based opinion model shows the best performance in combating disinformation among all in that uncertainty-based decisions can significantly help users believe true information more than disinformation.
Chang, Zhan-Lun, Lee, Chun-Yen, Lin, Chia-Hung, Wang, Chih-Yu, Wei, Hung-Yu.  2021.  Game-Theoretic Intrusion Prevention System Deployment for Mobile Edge Computing. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.
The network attack such as Distributed Denial-of-Service (DDoS) attack could be critical to latency-critical systems such as Mobile Edge Computing (MEC) as such attacks significantly increase the response delay of the victim service. Intrusion prevention system (IPS) is a promising solution to defend against such attacks, but there will be a trade-off between IPS deployment and application resource reservation as the deployment of IPS will reduce the number of computation resources for MEC applications. In this paper, we proposed a game-theoretic framework to study the joint computation resource allocation and IPS deployment in the MEC architecture. We study the pricing strategy of the MEC platform operator and purchase strategy of the application service provider, given the expected attack strength and end user demands. The best responses of both MPO and ASPs are derived theoretically to identify the Stackelberg equilibrium. The simulation results confirm that the proposed solutions significantly increase the social welfare of the system.
2022-10-13
Cernica, Ionuţ, Popescu, Nirvana.  2020.  Computer Vision Based Framework For Detecting Phishing Webpages. 2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1—4.
One of the most dangerous threats on the internet nowadays is phishing attacks. This type of attack can lead to data breaches, and with it to image and financial loss in a company. The most common technique to exploit this type of attack is by sending emails to the target users to trick them to send their credentials to the attacker servers. If the user clicks on the link from the email, then good detection is needed to protect the user credentials. Many papers presented Computer Vision as a good detection technique, but we will explain why this solution can generate lots of false positives in some important environments. This paper focuses on challenges of the Computer Vision detection technique and proposes a combination of multiple techniques together with Computer Vision technique in order to solve the challenges we have shown. We also will present a methodology to detect phishing attacks that will work with the proposed combination techniques.
2022-10-12
Ogawa, Yuji, Kimura, Tomotaka, Cheng, Jun.  2021.  Vulnerability Assessment for Deep Learning Based Phishing Detection System. 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). :1—2.
Recently, the threats of phishing attacks have in-creased. As a countermeasure against phishing attacks, phishing detection systems using deep learning techniques have been considered. However, deep learning techniques are vulnerable to adversarial examples (AEs) that intentionally cause misclassification. When AEs are applied to a deep-learning-based phishing detection system, they pose a significant security risk. Therefore, in this paper, we assess the vulnerability of a phishing detection system by inputting AEs generated based on a dataset that consists of phishing sites’ URLs. Moreover, we consider countermeasures against AEs and clarify whether these defense methods can prevent misclassification.
2022-10-06
He, Bingjun, Chen, Jianfeng.  2021.  Named Entity Recognition Method in Network Security Domain Based on BERT-BiLSTM-CRF. 2021 IEEE 21st International Conference on Communication Technology (ICCT). :508–512.
With the increase of the number of network threats, the knowledge graph is an effective method to quickly analyze the network threats from the mass of network security texts. Named entity recognition in network security domain is an important task to construct knowledge graph. Aiming at the problem that key Chinese entity information in network security related text is difficult to identify, a named entity recognition model in network security domain based on BERT-BiLSTM-CRF is proposed to identify key named entities in network security related text. This model adopts the BERT pre-training model to obtain the word vectors of the preceding and subsequent text information, and the obtained word vectors will be input to the subsequent BiLSTM module and CRF module for encoding and sorting. The test results show that this model has a good effect on the data set of network security domain. The recognition effect of this model is better than that of LSTM-CRF, BERT-LSTM-CRF, BERT-CRF and other models, and the F1=93.81%.
2022-10-04
Chen, Cen, Sun, Chengzhi, Wu, Liqin, Ye, Xuerong, Zhai, Guofu.  2021.  Model-Based Quality Consistency Analysis of Permanent Magnet Synchronous Motor Cogging Torque in Wide Temperature Range. 2021 3rd International Conference on System Reliability and Safety Engineering (SRSE). :131–138.
Permanent magnet synchronous motors (PMSM) are widely used in the shafts of industrial robots. The quality consistency of PMSM, derived from both the wide range of operating temperature and inherent uncertainties, significantly influences the application of the PMSM. In this paper, the mechanism of temperature influence on the PMSM is analyzed with the aid of the digital model, and the quantitative relationship between the main PMSM feature, the cogging torque, and the temperature is revealed. Then, the NdFeB remanence in different temperature levels was measured to obtain its temperature coefficient. The finite element method is used to simulate PMSM. The qualitative and quantitative conclusions of cogging torque drop when the temperature rises are verified by experiments. The magnetic performance data of the magnetic tiles of 50 motors were randomly sampled and the cogging torque simulation was carried out under the fixed ambient temperature. The results show that the dispersion significantly increases the stray harmonic components of the cogging torque.
2022-10-03
Saleh, Yasmine N. M., Chibelushi, Claude C., Abdel-Hamid, Ayman A., Soliman, Abdel-Hamid.  2021.  Privacy-Aware Ant Routing for Wireless Multimedia Sensor Networks in Healthcare. 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR). :1–6.
The problem of maintaining the privacy of sensitive healthcare data is crucial yet the significance of research efforts achieved still need robust development in privacy protection techniques for Wireless Multimedia Sensor Networks (WMSNs). This paper aims to investigate different privacy-preserving methods for WMSNs that can be applied in healthcare, to guarantee a privacy-aware transmission of multimedia data between sensors and base stations. The combination of ant colony optimization-based routing and hierarchical structure of the network have been proposed in the AntSensNet WMSN-based routing protocol to offer QoS and power efficient multipath multimedia packet scheduling. In this paper, the AntSensNet routing protocol was extended by utilizing privacy-preserving mechanisms thus achieving anonymity / pseudonymity, unlinkability, and location privacy. The vulnerability of standard AntSensNet routing protocol to privacy threats have raised the need for the following privacy attacks’ countermeasures: (i) injection of fake traffic, which achieved anonymity, privacy of source and base locations, as well as unlinkability; (ii) encrypting and correlating the size of scalar and multimedia data which is transmitted through a WMSN, along with encrypting and correlating the size of ants, to achieve unlinkability and location privacy; (iii) pseudonyms to achieve unlinkability. The impact of these countermeasures is assessed using quantitative performance analysis conducted through simulation to gauge the overhead of the added privacy countermeasures. It can be concluded that the introduced modifications did enhance the privacy but with a penalty of increased delay and multimedia jitter. The health condition of a patient determines the vitals to be monitored which affects the volumes and sources of fake traffic. Consequently, desired privacy level will dictate incurred overhead due to multimedia transmissions and privacy measures.