Biblio
Cyberspace is the fifth largest activity space after land, sea, air and space. Safeguarding Cyberspace Security is a major issue related to national security, national sovereignty and the legitimate rights and interests of the people. With the rapid development of artificial intelligence technology and its application in various fields, cyberspace security is facing new challenges. How to help the network security personnel grasp the security trend at any time, help the network security monitoring personnel respond to the alarm information quickly, and facilitate the tracking and processing of the monitoring personnel. This paper introduces a method of using situational awareness micro application actual combat attack and defense robot to quickly feed back the network attack information to the monitoring personnel, timely report the attack information to the information reporting platform and automatically block the malicious IP.
The Internet of Things (IoT) is a technology that has evolved to make day-to-day life faster and easier. But with the increase in the number of users, the IoT network is prone to various security and privacy issues. And most of these issues/attacks occur during the routing of the data in the IoT network. Therefore, for secure routing among resource-constrained nodes of IoT, the RPL protocol has been standardized by IETF. But the RPL protocol is also vulnerable to attacks based on resources, topology formation and traffic flow between nodes. The attacks like DoS, Blackhole, eavesdropping, flood attacks and so on cannot be efficiently defended using RPL protocol for routing data in IoT networks. So, defense mechanisms are used to protect networks from routing attacks. And are classified into Secure Routing Protocols (SRPs) and Intrusion Detection systems (IDs). This paper gives an overview of the RPL attacks and the defense mechanisms used to detect or mitigate the RPL routing attacks in IoT networks.
The “Internet of Things” (IoT) is internetworking of physical devices known as 'things', algorithms, equipment and techniques that allow communication with another device, equipment and software over the network. And with the advancement in data communication, every device must be connected via the Internet. For this purpose, we use resource-constrained sensor nodes for collecting data from homes, offices, hospitals, industries and data centers. But various vulnerabilities may ruin the functioning of the sensor nodes. Routing Protocol for Low Power and Lossy Networks (RPL) is a standardized, secure routing protocol designed for the 6LoWPAN IoT network. It's a proactive routing protocol that works on the destination-oriented topology to perform safe routing. The Sinkhole is a networking attack that destroys the topology of the RPL protocol as the attacker node changes the route of all the traffic in the IoT network. In this paper, we have given a survey of Sinkhole attacks in IoT and proposed different methods for preventing and detecting these attacks in a low-power-based IoT network.
The “Internet of Things (IoT)” is a term that describes physical sensors, processing software, power and other technologies to connect or interchange information between systems and devices through the Internet and other forms of communication. RPL protocol can efficiently establish network routes, communicate routing information, and adjust the topology. The 6LoWPAN concept was born out of the belief that IP should protect even the tiniest devices, and for low-power devices, minimal computational capabilities should be permitted to join IoT. The DIS-Flooding against RPL-based IoT with its mitigation techniques are discussed in this paper.
The Internet of Things (IoT) continuously grows as applications require connectivity and sensor networks are being deployed in multiple application domains. With the increased applicability demand, the need for testing and development frameworks also increases. This paper presents a novel simulation framework for testing IPv6 over Low Power Wireless Personal Networks (6LoWPAN) networks using the Mininet-WiFi simulator. The goal of the simulation framework is to allow easier automation testing of large-scale networks and to also allow easy configuration. This framework is a starting point for many development scenarios targeting traffic management, Quality of Service (QoS) or security network features. A basic smart city simulation is presented which demonstrates the working principles of the framework.
Zero trust security model has been picking up adoption in various organizations due to its various advantages. Data quality is still one of the fundamental challenges in data curation in many organizations where data consumers don’t trust data due to associated quality issues. As a result, there is a lack of confidence in making business decisions based on data. We design a model based on the zero trust security model to demonstrate how the trust of data consumers can be established. We present a sample application to distinguish the traditional approach from the zero trust based data quality framework.
With the objective to eliminate the input current sensor in a totem-pole boost power factor corrector (PFC) for its low-cost design, a novel discretized sampling-based robust control scheme is proposed in this work. The proposed control methodology proves to be beneficial due to its ease of implementation and its ability to support high-frequency operation, while being able to eliminate one sensor and, thus, enhancing reliability and cost-effectiveness. In addition, detailed closed-loop stability analysis is carried out for the controller in discrete domain to ascertain brisk dynamic operation when subjected to sudden load fluctuations. To establish the robustness of the proposed control scheme, a detailed sensitivity analysis of the closed-loop performance metrics with respect to undesired changes and inherent uncertainty in system parameters is presented in this article. A comparison with the state-of-the-art (SOA) methods is provided, and conclusive results in terms of better dynamic performance are also established. To verify and elaborate on the specifics of the proposed scheme, a detailed simulation study is conducted, and the results show 25% reduction in response time as compared to SOA approaches. A 500-W boost PFC prototype is developed and tested with the proposed control scheme to evaluate and benchmark the system steady-state and dynamic performance. A total harmonic distortion of 1.68% is obtained at the rated load with a resultant power factor of 0.998 (lag), which proves the effectiveness and superiority of the proposed control scheme.
Conference Name: IEEE Journal of Emerging and Selected Topics in Industrial Electronics