Visible to the public Biblio

Found 2131 results

Filters: First Letter Of Last Name is D  [Clear All Filters]
2023-03-31
Cuzzocrea, Alfredo, Damiani, Ernesto.  2021.  Privacy-Preserving Big Data Exchange: Models, Issues, Future Research Directions. 2021 IEEE International Conference on Big Data (Big Data). :5081–5084.
Big data exchange is an emerging problem in the context of big data management and analytics. In big data exchange, multiple entities exchange big datasets beyond the common data integration or data sharing paradigms, mostly in the context of data federation architectures. How to make big data exchange while ensuring privacy preservation constraintsƒ The latter is a critical research challenge that is gaining momentum on the research community, especially due to the wide family of application scenarios where it plays a critical role (e.g., social networks, bio-informatics tools, smart cities systems and applications, and so forth). Inspired by these considerations, in this paper we provide an overview of models and issues in the context of privacy-preserving big data exchange research, along with a selection of future research directions that will play a critical role in next-generation research.
Luo, Xingqi, Wang, Haotian, Dong, Jinyang, Zhang, Chuan, Wu, Tong.  2022.  Achieving Privacy-preserving Data Sharing for Dual Clouds. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :139–146.
With the advent of the era of Internet of Things (IoT), the increasing data volume leads to storage outsourcing as a new trend for enterprises and individuals. However, data breaches frequently occur, bringing significant challenges to the privacy protection of the outsourced data management system. There is an urgent need for efficient and secure data sharing schemes for the outsourced data management infrastructure, such as the cloud. Therefore, this paper designs a dual-server-based data sharing scheme with data privacy and high efficiency for the cloud, enabling the internal members to exchange their data efficiently and securely. Dual servers guarantee that none of the servers can get complete data independently by adopting secure two-party computation. In our proposed scheme, if the data is destroyed when sending it to the user, the data will not be restored. To prevent the malicious deletion, the data owner adds a random number to verify the identity during the uploading procedure. To ensure data security, the data is transmitted in ciphertext throughout the process by using searchable encryption. Finally, the black-box leakage analysis and theoretical performance evaluation demonstrate that our proposed data sharing scheme provides solid security and high efficiency in practice.
Zhang, Hui, Ding, Jianing, Tan, Jianlong, Gou, Gaopeng, Shi, Junzheng.  2022.  Classification of Mobile Encryption Services Based on Context Feature Enhancement. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :860–866.
Smart phones have become the preferred way for Chinese Internet users currently. The mobile phone traffic is large from the operating system. These traffic is mainly generated by the services. In the context of the universal encryption of the traffic, classification identification of mobile encryption services can effectively reduce the difficulty of analytical difficulty due to mobile terminals and operating system diversity, and can more accurately identify user access targets, and then enhance service quality and network security management. The existing mobile encryption service classification methods have two shortcomings in feature selection: First, the DL model is used as a black box, and the features of large dimensions are not distinguished as input of classification model, which resulting in sharp increase in calculation complexity, and the actual application is limited. Second, the existing feature selection method is insufficient to use the time and space associated information of traffic, resulting in less robustness and low accuracy of the classification. In this paper, we propose a feature enhancement method based on adjacent flow contextual features and evaluate the Apple encryption service traffic collected from the real world. Based on 5 DL classification models, the refined classification accuracy of Apple services is significantly improved. Our work can provide an effective solution for the fine management of mobile encryption services.
Zhang, Junjian, Tan, Hao, Deng, Binyue, Hu, Jiacen, Zhu, Dong, Huang, Linyi, Gu, Zhaoquan.  2022.  NMI-FGSM-Tri: An Efficient and Targeted Method for Generating Adversarial Examples for Speaker Recognition. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :167–174.
Most existing deep neural networks (DNNs) are inexplicable and fragile, which can be easily deceived by carefully designed adversarial example with tiny undetectable noise. This allows attackers to cause serious consequences in many DNN-assisted scenarios without human perception. In the field of speaker recognition, the attack for speaker recognition system has been relatively mature. Most works focus on white-box attacks that assume the information of the DNN is obtainable, and only a few works study gray-box attacks. In this paper, we study blackbox attacks on the speaker recognition system, which can be applied in the real world since we do not need to know the system information. By combining the idea of transferable attack and query attack, our proposed method NMI-FGSM-Tri can achieve the targeted goal by misleading the system to recognize any audio as a registered person. Specifically, our method combines the Nesterov accelerated gradient (NAG), the ensemble attack and the restart trigger to design an attack method that generates the adversarial audios with good performance to attack blackbox DNNs. The experimental results show that the effect of the proposed method is superior to the extant methods, and the attack success rate can reach as high as 94.8% even if only one query is allowed.
Zhang, Jie, Li, Bo, Xu, Jianghe, Wu, Shuang, Ding, Shouhong, Zhang, Lei, Wu, Chao.  2022.  Towards Efficient Data Free Blackbox Adversarial Attack. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :15094–15104.
Classic black-box adversarial attacks can take advantage of transferable adversarial examples generated by a similar substitute model to successfully fool the target model. However, these substitute models need to be trained by target models' training data, which is hard to acquire due to privacy or transmission reasons. Recognizing the limited availability of real data for adversarial queries, recent works proposed to train substitute models in a data-free black-box scenario. However, their generative adversarial networks (GANs) based framework suffers from the convergence failure and the model collapse, resulting in low efficiency. In this paper, by rethinking the collaborative relationship between the generator and the substitute model, we design a novel black-box attack framework. The proposed method can efficiently imitate the target model through a small number of queries and achieve high attack success rate. The comprehensive experiments over six datasets demonstrate the effectiveness of our method against the state-of-the-art attacks. Especially, we conduct both label-only and probability-only attacks on the Microsoft Azure online model, and achieve a 100% attack success rate with only 0.46% query budget of the SOTA method [49].
You, Jinliang, Zhang, Di, Gong, Qingwu, Zhu, Jiran, Tang, Haiguo, Deng, Wei, Kang, Tong.  2022.  Fault phase selection method of distribution network based on wavelet singular entropy and DBN. 2022 China International Conference on Electricity Distribution (CICED). :1742–1747.
The selection of distribution network faults is of great significance to accurately identify the fault location, quickly restore power and improve the reliability of power supply. This paper mainly studies the fault phase selection method of distribution network based on wavelet singular entropy and deep belief network (DBN). Firstly, the basic principles of wavelet singular entropy and DBN are analyzed, and on this basis, the DBN model of distribution network fault phase selection is proposed. Firstly, the transient fault current data of the distribution network is processed to obtain the wavelet singular entropy of the three phases, which is used as the input of the fault phase selection model; then the DBN network is improved, and an artificial neural network (ANN) is introduced to make it a fault Select the phase classifier, and specify the output label; finally, use Simulink to build a simulation model of the IEEE33 node distribution network system, obtain a large amount of data of various fault types, generate a training sample library and a test sample library, and analyze the neural network. The adjustment of the structure and the training of the parameters complete the construction of the DBN model for the fault phase selection of the distribution network.
ISSN: 2161-749X
2023-03-17
Dash, Lipsa, Sharma, Sanjeev, M, Manish, M, Chaitanya, P, Vamsi Krishna, Manna, Souvik.  2022.  Comparative Analysis of Secured Transport Systems using RFID Technology for Schools. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–6.
Despite the strict measures taken by authorities for children safety, crime against children is increasing. To curb this crime, it is important to improve the safety of children. School authorities can be severely penalized for these incidents, hence monitoring the school bus is significantly important in limiting these incidents. The developing worry of families for the security and insurance of their kids has started incredible interest in creating strong frameworks that give successful following and oversight of kids driving among home and school. Coordinated transport following permits youngsters to partake more in their normal schoolwork longer than trusting that a transport will be late with the assistance of notice and guarantees the security of every understudy. These days, reacting to the necessities existing apart from everything else, numerous instructive foundations have begun to push more towards a compelling global positioning framework of their vehicles that ensures the wellbeing of their understudies. Effective transport following is accomplished by procuring the geographic directions utilizing the GPS module and communicating the informationto a distant server. The framework depends on prepared to-utilize inactive RFID peruses. Make a message pop-up from the server script subsequent to checking the understudy's RFID tag be. The RFID examine exhibiting that the understudy boarded the vehicle to the specific trained professionals and the parent. Successful transport following permits school specialists, guardians, and drivers to precisely design their schedules while protecting kids from the second they get on until they get off the transport. The framework overall makes it conceivable to educate the administration regarding crises or protests. A variety of reports can be generated for different school-wide real-time bus and vehicle activities. This paper reviews the various smart security transport systems proposed for providing security features.
Fuhui, Li, Decheng, Kong, Xiaowei, Meng, Yikun, Fang, Ketai, He.  2022.  Magnetic properties and optimization of AlNiCo fabricated by additive manufacturing. 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA). :354–358.
In this paper, we use selective laser melting (SLM) technology to fabricate AlNiCo magnetic materials, and the effects of laser processing parameters on the density and mechanical properties of AlNiCo magnetic materials were studied. We tested the magnetic properties of the heat-treated magnets. The results show that both laser power and scanning speed affect the forming. In this paper, the influence of laser power on the density of samples far exceeds the scanning speed. Through the experiment, we obtained the optimal range of process parameters: laser power (150 170W) and laser scanning speed (800 1000mm/s). Although the samples formed within this range have higher density, there are still many cracks, further research work should be done.
ISSN: 2158-2297
Dhasade, Akash, Dresevic, Nevena, Kermarrec, Anne-Marie, Pires, Rafael.  2022.  TEE-based decentralized recommender systems: The raw data sharing redemption. 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS). :447–458.
Recommenders are central in many applications today. The most effective recommendation schemes, such as those based on collaborative filtering (CF), exploit similarities between user profiles to make recommendations, but potentially expose private data. Federated learning and decentralized learning systems address this by letting the data stay on user's machines to preserve privacy: each user performs the training on local data and only the model parameters are shared. However, sharing the model parameters across the network may still yield privacy breaches. In this paper, we present Rex, the first enclave-based decentralized CF recommender. Rex exploits Trusted execution environments (TEE), such as Intel software guard extensions (SGX), that provide shielded environments within the processor to improve convergence while preserving privacy. Firstly, Rex enables raw data sharing, which ultimately speeds up convergence and reduces the network load. Secondly, Rex fully preserves privacy. We analyze the impact of raw data sharing in both deep neural network (DNN) and matrix factorization (MF) recommenders and showcase the benefits of trusted environments in a full-fledged implementation of Rex. Our experimental results demonstrate that through raw data sharing, Rex significantly decreases the training time by 18.3 x and the network load by 2 orders of magnitude over standard decentralized approaches that share only parameters, while fully protecting privacy by leveraging trustworthy hardware enclaves with very little overhead.
ISSN: 1530-2075
Pham, Hong Thai, Nguyen, Khanh Nam, Phun, Vy Hoa, Dang, Tran Khanh.  2022.  Secure Recommender System based on Neural Collaborative Filtering and Federated Learning. 2022 International Conference on Advanced Computing and Analytics (ACOMPA). :1–11.
A recommender system aims to suggest the most relevant items to users based on their personal data. However, data privacy is a growing concern for anyone. Secure recommender system is a research direction to preserve user privacy while maintaining as high performance as possible. The most recent strategy is to use Federated Learning, a machine learning technique for privacy-preserving distributed training. In Federated Learning, a subset of users will be selected for training model using data at local systems, the server will securely aggregate the computing result from local models to generate a global model, finally that model will give recommendations to users. In this paper, we present a novel algorithm to train Collaborative Filtering recommender system specialized for the ranking task in Federated Learning setting, where the goal is to protect user interaction information (i.e., implicit feedback). Specifically, with the help of the algorithm, the recommender system will be trained by Neural Collaborative Filtering, one of the state-of-the-art matrix factorization methods and Bayesian Personalized Ranking, the most common pairwise approach. In contrast to existing approaches which protect user privacy by requiring users to download/upload the information associated with all interactions that they can possibly interact with in order to perform training, the algorithm can protect user privacy at low communication cost, where users only need to obtain/transfer the information related to a small number of interactions per training iteration. Above all, through extensive experiments, the algorithm has demonstrated to utilize user data more efficient than the most recent research called FedeRank, while ensuring that user privacy is still preserved.
Sendner, Christoph, Iffländer, Lukas, Schindler, Sebastian, Jobst, Michael, Dmitrienko, Alexandra, Kounev, Samuel.  2022.  Ransomware Detection in Databases through Dynamic Analysis of Query Sequences. 2022 IEEE Conference on Communications and Network Security (CNS). :326–334.
Ransomware is an emerging threat that imposed a \$ 5 billion loss in 2017, rose to \$ 20 billion in 2021, and is predicted to hit \$ 256 billion in 2031. While initially targeting PC (client) platforms, ransomware recently leaped over to server-side databases-starting in January 2017 with the MongoDB Apocalypse attack and continuing in 2020 with 85,000 MySQL instances ransomed. Previous research developed countermeasures against client-side ransomware. However, the problem of server-side database ransomware has received little attention so far. In our work, we aim to bridge this gap and present DIMAQS (Dynamic Identification of Malicious Query Sequences), a novel anti-ransomware solution for databases. DIMAQS performs runtime monitoring of incoming queries and pattern matching using two classification approaches (Colored Petri Nets (CPNs) and Deep Neural Networks (DNNs)) for attack detection. Our system design exhibits several novel techniques like dynamic color generation to efficiently detect malicious query sequences globally (i.e., without limiting detection to distinct user connections). Our proof-of-concept and ready-to-use implementation targets MySQL servers. The evaluation shows high efficiency without false negatives for both approaches and a false positive rate of nearly 0%. Both classifiers show very moderate performance overheads below 6%. We will publish our data sets and implementation, allowing the community to reproduce our tests and results.
Agarwal, Reshu, Chaudhary, Alka, Gupta, Deepa, Das, Devleen.  2022.  Ransomware Vulnerability used in darknet for web application attack. 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET). :1–5.
Cyber security is turning into a significant angle in each industry like in banking part, force and computerization segments. Servers are basic resources in these enterprises where business basic touch information is put away. These servers frequently join web servers in them through which any business information and tasks are performed remotely. Thus, clearly for a solid activity, security of web servers is extremely basic. This paper gives another testing way to deal with defenselessness appraisal of web applications by methods for breaking down and utilizing a consolidated arrangement of apparatuses to address a wide scope of security issues.
Jakubisin, Daniel J., Schutz, Zachary, Davis, Bradley.  2022.  Resilient Underwater Acoustic Communications in the Presence of Interference and Jamming. OCEANS 2022, Hampton Roads. :1–5.
Acoustic communication is a key enabler for underwater Internet of Things networks between autonomous underwater platforms. Underwater Internet of Things networks face a harsh communications environment and limited energy resources which makes them susceptible to interference, whether intentional (i.e., jamming) or unintentional. Resilient, power efficient waveforms and modulation schemes are needed for underwater acoustic communications in order to avoid outages and excessive power drain. We explore the impact of modulation scheme on the resiliency of underwater acoustic communications in the presence of channel impairments, interference, and jamming. In particular, we consider BFSK and OFDM schemes for underwater acoustic communications and assess the utility of Polar coding for strengthening resiliency.
ISSN: 0197-7385
2023-03-06
Jiang, Linlang, Zhou, Jingbo, Xu, Tong, Li, Yanyan, Chen, Hao, Dou, Dejing.  2022.  Time-aware Neural Trip Planning Reinforced by Human Mobility. 2022 International Joint Conference on Neural Networks (IJCNN). :1–8.
Trip planning, which targets at planning a trip consisting of several ordered Points of Interest (POIs) under user-provided constraints, has long been treated as an important application for location-based services. The goal of trip planning is to maximize the chance that the users will follow the planned trip while it is difficult to directly quantify and optimize the chance. Conventional methods either leverage statistical analysis to rank POIs to form a trip or generate trips following pre-defined objectives based on constraint programming to bypass such a problem. However, these methods may fail to reflect the complex latent patterns hidden in the human mobility data. On the other hand, though there are a few deep learning-based trip recommendation methods, these methods still cannot handle the time budget constraint so far. To this end, we propose a TIme-aware Neural Trip Planning (TINT) framework to tackle the above challenges. First of all, we devise a novel attention-based encoder-decoder trip generator that can learn the correlations among POIs and generate trips under given constraints. Then, we propose a specially-designed reinforcement learning (RL) paradigm to directly optimize the objective to obtain an optimal trip generator. For this purpose, we introduce a discriminator, which distinguishes the generated trips from real-life trips taken by users, to provide reward signals to optimize the generator. Subsequently, to ensure the feedback from the discriminator is always instructive, we integrate an adversarial learning strategy into the RL paradigm to update the trip generator and the discriminator alternately. Moreover, we devise a novel pre-training schema to speed up the convergence for an efficient training process. Extensive experiments on four real-world datasets validate the effectiveness and efficiency of our framework, which shows that TINT could remarkably outperform the state-of-the-art baselines within short response time.
ISSN: 2161-4407
Deng, Weiyang, Sargent, Barbara, Bradley, Nina S., Klein, Lauren, Rosales, Marcelo, Pulido, José Carlos, Matarić, Maja J, Smith, Beth A..  2021.  Using Socially Assistive Robot Feedback to Reinforce Infant Leg Movement Acceleration. 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN). :749–756.
Learning movement control is a fundamental process integral to infant development. However, it is still unclear how infants learn to control leg movement. This work explores the potential of using socially assistive robots to provide real-time adaptive reinforcement learning for infants. Ten 6 to 8-month old typically-developing infants participated in a study where a robot provided reinforcement when the infant’s right leg acceleration fell within the range of 9 to 20 m/s2. If infants increased the proportion of leg accelerations in this band, they were categorized as "performers". Six of the ten participating infants were categorized as performers; the performer subgroup increased the magnitude of acceleration, proportion of target acceleration for right leg, and ratio of right/left leg acceleration peaks within the target acceleration band and their right legs increased movement intensity from the baseline to the contingency session. The results showed infants specifically adjusted their right leg acceleration in response to a robot- provided reward. Further study is needed to understand how to improve human-robot interaction policies for personalized interventions for young infants.
ISSN: 1944-9437
2023-03-03
Piugie, Yris Brice Wandji, Di Manno, Joël, Rosenberger, Christophe, Charrier, Christophe.  2022.  Keystroke Dynamics based User Authentication using Deep Learning Neural Networks. 2022 International Conference on Cyberworlds (CW). :220–227.
Keystroke dynamics is one solution to enhance the security of password authentication without adding any disruptive handling for users. Industries are looking for more security without impacting too much user experience. Considered as a friction-less solution, keystroke dynamics is a powerful solution to increase trust during user authentication without adding charge to the user. In this paper, we address the problem of user authentication considering the keystroke dynamics modality. We proposed a new approach based on the conversion of behavioral biometrics data (time series) into a 3D image. This transformation process keeps all the characteristics of the behavioral signal. The time series do not receive any filtering operation with this transformation and the method is bijective. This transformation allows us to train images based on convolutional neural networks. We evaluate the performance of the authentication system in terms of Equal Error Rate (EER) on a significant dataset and we show the efficiency of the proposed approach on a multi-instance system.
ISSN: 2642-3596
Hong, Geng, Yang, Zhemin, Yang, Sen, Liaoy, Xiaojing, Du, Xiaolin, Yang, Min, Duan, Haixin.  2022.  Analyzing Ground-Truth Data of Mobile Gambling Scams. 2022 IEEE Symposium on Security and Privacy (SP). :2176–2193.
With the growth of mobile computing techniques, mobile gambling scams have seen a rampant increase in the recent past. In mobile gambling scams, miscreants deliver scamming messages via mobile instant messaging, host scam gambling platforms on mobile apps, and adopt mobile payment channels. To date, there is little quantitative knowledge about how this trending cybercrime operates, despite causing daily fraud losses estimated at more than \$\$\$522,262 USD. This paper presents the first empirical study based on ground-truth data of mobile gambling scams, associated with 1,461 scam incident reports and 1,487 gambling scam apps, spanning from January 1, 2020 to December 31, 2020. The qualitative and quantitative analysis of this ground-truth data allows us to characterize the operational pipeline and full fraud kill chain of mobile gambling scams. In particular, we study the social engineering tricks used by scammers and reveal their effectiveness. Our work provides a systematic analysis of 1,068 confirmed Android and 419 iOS scam apps, including their development frameworks, declared permissions, compatibility, and backend network infrastructure. Perhaps surprisingly, our study unveils that public online app generators have been abused to develop gambling scam apps. Our analysis reveals several payment channels (ab)used by gambling scam app and uncovers a new type of money mule-based payment channel with the average daily gambling deposit of \$\$\$400,000 USD. Our findings enable a better understanding of the mobile gambling scam ecosystem, and suggest potential avenues to disrupt these scam activities.
ISSN: 2375-1207
Ding, Shijun, Wang, An, Sun, Shaofei, Ding, Yaoling, Hou, Xintian, Han, Dong.  2022.  Correlation Power Analysis and Protected Implementation on Lightweight Block Cipher FESH. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :29–34.
With the development of the Internet of Things (IoT), the demand for lightweight cipher came into being. At the same time, the security of lightweight cipher has attracted more and more attention. FESH algorithm is a lightweight cipher proposed in 2019. Relevant studies have proved that it has strong ability to resist differential attack and linear attack, but its research on resisting side-channel attack is still blank. In this paper, we first introduce a correlation power analysis for FESH algorithm and prove its effectiveness by experiments. Then we propose a mask scheme for FESH algorithm, and prove the security of the mask. According to the experimental results, protected FESH only costs 8.6%, 72.3%, 16.7% of extra time, code and RAM.
Dal, Deniz, Çelik, Esra.  2022.  Evaluation of the Predictability of Passwords of Computer Engineering Students. 2022 3rd International Informatics and Software Engineering Conference (IISEC). :1–6.
As information and communication technologies evolve every day, so does the use of technology in our daily lives. Along with our increasing dependence on digital information assets, security vulnerabilities are becoming more and more apparent. Passwords are a critical component of secure access to digital systems and applications. They not only prevent unauthorized access to these systems, but also distinguish the users of such systems. Research on password predictability often relies on surveys or leaked data. Therefore, there is a gap in the literature for studies that consider real data in this regard. This study investigates the password security awareness of 161 computer engineering students enrolled in a Linux-based undergraduate course at Ataturk University. The study is conducted in two phases, and in the first phase, 12 dictionaries containing also real student data are formed. In the second phase of the study, a dictionary-based brute-force attack is utilized by means of a serial and parallel version of a Bash script to crack the students’ passwords. In this respect, the /etc/shadow file of the Linux system is used as a basis to compare the hashed versions of the guessed passwords. As a result, the passwords of 23 students, accounting for 14% of the entire student group, were cracked. We believe that this is an unacceptably high prediction rate for such a group with high digital literacy. Therefore, due to this important finding of the study, we took immediate action and shared the results of the study with the instructor responsible for administering the information security course that is included in our curriculum and offered in one of the following semesters.
Du, Mingshu, Ma, Yuan, Lv, Na, Chen, Tianyu, Jia, Shijie, Zheng, Fangyu.  2022.  An Empirical Study on the Quality of Entropy Sources in Linux Random Number Generator. ICC 2022 - IEEE International Conference on Communications. :559–564.
Random numbers are essential for communications security, as they are widely employed as secret keys and other critical parameters of cryptographic algorithms. The Linux random number generator (LRNG) is the most popular open-source software-based random number generator (RNG). The security of LRNG is influenced by the overall design, especially the quality of entropy sources. Therefore, it is necessary to assess and quantify the quality of the entropy sources which contribute the main randomness to RNGs. In this paper, we perform an empirical study on the quality of entropy sources in LRNG with Linux kernel 5.6, and provide the following two findings. We first analyze two important entropy sources: jiffies and cycles, and propose a method to predict jiffies by cycles with high accuracy. The results indicate that, the jiffies can be correctly predicted thus contain almost no entropy in the condition of knowing cycles. The other important finding is the failure of interrupt cycles during system boot. The lower bits of cycles caused by interrupts contain little entropy, which is contrary to our traditional cognition that lower bits have more entropy. We believe these findings are of great significance to improve the efficiency and security of the RNG design on software platforms.
ISSN: 1938-1883
2023-02-28
Gopalakrishna, Nikhil Krishna, Anandayuvaraj, Dharun, Detti, Annan, Bland, Forrest Lee, Rahaman, Sazzadur, Davis, James C..  2022.  “If security is required”: Engineering and Security Practices for Machine Learning-based IoT Devices. 2022 IEEE/ACM 4th International Workshop on Software Engineering Research and Practices for the IoT (SERP4IoT). :1—8.
The latest generation of IoT systems incorporate machine learning (ML) technologies on edge devices. This introduces new engineering challenges to bring ML onto resource-constrained hardware, and complications for ensuring system security and privacy. Existing research prescribes iterative processes for machine learning enabled IoT products to ease development and increase product success. However, these processes mostly focus on existing practices used in other generic software development areas and are not specialized for the purpose of machine learning or IoT devices. This research seeks to characterize engineering processes and security practices for ML-enabled IoT systems through the lens of the engineering lifecycle. We collected data from practitioners through a survey (N=25) and interviews (N=4). We found that security processes and engineering methods vary by company. Respondents emphasized the engineering cost of security analysis and threat modeling, and trade-offs with business needs. Engineers reduce their security investment if it is not an explicit requirement. The threats of IP theft and reverse engineering were a consistent concern among practitioners when deploying ML for IoT devices. Based on our findings, we recommend further research into understanding engineering cost, compliance, and security trade-offs.
2023-02-24
Coleman, Jared, Kiamari, Mehrdad, Clark, Lillian, D'Souza, Daniel, Krishnamachari, Bhaskar.  2022.  Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :1070—1075.
Existing solutions for scheduling arbitrarily complex distributed applications on networks of computational nodes are insufficient for scenarios where the network topology is changing rapidly. New Internet of Things (IoT) domains like the Internet of Robotic Things (IoRT) and the Internet of Battlefield Things (IoBT) demand solutions that are robust and efficient in environments that experience constant and/or rapid change. In this paper, we demonstrate how recent advancements in machine learning (in particular, in graph convolutional neural networks) can be leveraged to solve the task scheduling problem with decent performance and in much less time than traditional algorithms.
Golam, Mohtasin, Akter, Rubina, Naufal, Revin, Doan, Van-Sang, Lee, Jae-Min, Kim, Dong-Seong.  2022.  Blockchain Inspired Intruder UAV Localization Using Lightweight CNN for Internet of Battlefield Things. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :342—349.
On the Internet of Battlefield Things (IoBT), unmanned aerial vehicles (UAVs) provide significant operational advantages. However, the exploitation of the UAV by an untrustworthy entity might lead to security violations or possibly the destruction of crucial IoBT network functionality. The IoBT system has substantial issues related to data tampering and fabrication through illegal access. This paper proposes the use of an intelligent architecture called IoBT-Net, which is built on a convolution neural network (CNN) and connected with blockchain technology, to identify and trace illicit UAV in the IoBT system. Data storage on the blockchain ledger is protected from unauthorized access, data tampering, and invasions. Conveniently, this paper presents a low complexity and robustly performed CNN called LRCANet to estimate AOA for object localization. The proposed LRCANet is efficiently designed with two core modules, called GFPU and stacks, which are cleverly organized with regular and point convolution layers, a max pool layer, and a ReLU layer associated with residual connectivity. Furthermore, the effectiveness of LRCANET is evaluated by various network and array configurations, RMSE, and compared with the accuracy and complexity of the existing state-of-the-art. Additionally, the implementation of tailored drone-based consensus is evaluated in terms of three major classes and compared with the other existing consensus.
Figueira, Nina, Pochmann, Pablo, Oliveira, Abel, de Freitas, Edison Pignaton.  2022.  A C4ISR Application on the Swarm Drones Context in a Low Infrastructure Scenario. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1—7.
The military operations in low communications infrastructure scenarios employ flexible solutions to optimize the data processing cycle using situational awareness systems, guaranteeing interoperability and assisting in all processes of decision-making. This paper presents an architecture for the integration of Command, Control, Computing, Communication, Intelligence, Surveillance and Reconnaissance Systems (C4ISR), developed within the scope of the Brazilian Ministry of Defense, in the context of operations with Unmanned Aerial Vehicles (UAV) - swarm drones - and the Internet-to-the-battlefield (IoBT) concept. This solution comprises the following intelligent subsystems embedded in UAV: STFANET, an SDN-Based Topology Management for Flying Ad Hoc Network focusing drone swarms operations, developed by University of Rio Grande do Sul; Interoperability of Command and Control (INTERC2), an intelligent communication middleware developed by Brazilian Navy; A Mission-Oriented Sensors Array (MOSA), which provides the automatization of data acquisition, data fusion, and data sharing, developed by Brazilian Army; The In-Flight Awareness Augmentation System (IFA2S), which was developed to increase the safety navigation of Unmanned Aerial Vehicles (UAV), developed by Brazilian Air Force; Data Mining Techniques to optimize the MOSA with data patterns; and an adaptive-collaborative system, composed of a Software Defined Radio (SDR), to solve the identification of electromagnetic signals and a Geographical Information System (GIS) to organize the information processed. This research proposes, as a main contribution in this conceptual phase, an application that describes the premises for increasing the capacity of sensing threats in the low structured zones, such as the Amazon rainforest, using existing communications solutions of Brazilian defense monitoring systems.
Ding, Haihao, Zhao, Qingsong.  2022.  Multilayer Network Modeling and Stability Analysis of Internet of Battlefield Things. 2022 IEEE International Systems Conference (SysCon). :1—6.
Intelligent service network under the paradigm of the Internet of Things (IoT) uses sensor and network communication technology to realize the interconnection of everything and real-time communication between devices. Under the background of combat, all kinds of sensor devices and equipment units need to be highly networked to realize interconnection and information sharing, which makes the Internet of Things technology hopeful to be applied in the battlefield to interconnect these entities to form the Internet of Battlefield Things (IoBT). This paper analyzes the related concepts of IoBT, and constructs the IoBT multilayer dependency network model according to the typical characteristics and topology of IoBT, then constructs the weighted super-adjacency matrix according to the coupling weights within and between different layers, and the stability model of IoBT is analyzed and derived. Finally, an example of IoBT network is given to provide a reference for analyzing the stability factors of IoBT network.