Visible to the public Biblio

Found 758 results

Filters: First Letter Of Last Name is E  [Clear All Filters]
2022-04-19
Gürcüo\u glu, O\u guz, Erdem, Mehmet Can, Çirkino\u glu, H. Ozan, Ferhanoglu, Onur, Kurt, Güne\c s Karabulut, Panayırcı, Erdal.  2021.  Improved Physical Layer Security in Visible Light Communications by Using Focused Light Emitters. 2021 29th Signal Processing and Communications Applications Conference (SIU). :1–4.

A conventional visible light communication system consists of a transmitter, a jammer that includes a few light emitting diodes, a legal listener and an eavesdropper. In this work, a similar system is designed with a collimating lens in order to create an extra layer of practical physical security measure. The use of a collimating lens makes it available to spatially limiting data transmission to an area under the lensed transmitter. Also focused data transmission through the optical lens, increases the secrecy rate. To investigate the applicability of the proposed design we designed a sample experimental setup using USRP and implemented in a laboratory environment. In the proposed set up, the receiver is in a fixed position. However, it is possible to implement an easy, practical and cheap hardware solution with respect to a beamforming type VLC that uses directional beam forming method to establish transmission to a dynamic target. In addition, it is achievable to control the size of the area where a receiver can access data by manipulating the distance between the optical lens and transmitter.

Evstafyev, G. A., Selyanskaya, E. A..  2021.  Method of Ensuring Structural Secrecy of the Signal. 2021 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO. :1–4.
A method for providing energy and structural secrecy of a signal is presented, which is based on the method of pseudo-random restructuring of the spreading sequence. This method complicates the implementation of the accumulation mode, and therefore the detection of the signal-code structure of the signal in a third-party receiver, due to the use of nested pseudo-random sequences (PRS) and their restructuring. And since the receiver-detector is similar to the receiver of the communication system, it is necessary to ensure optimal signal processing to implement an acceptable level of structural secrecy.
2022-04-18
Enireddy, Vamsidhar, Somasundaram, K., Mahesh M, P. C. Senthil, Ramkumar Prabhu, M., Babu, D. Vijendra, C, Karthikeyan..  2021.  Data Obfuscation Technique in Cloud Security. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). :358–362.
Cloud storage, in general, is a collection of Computer Technology resources provided to consumers over the internet on a leased basis. Cloud storage has several advantages, including simplicity, reliability, scalability, convergence, and cost savings. One of the most significant impediments to cloud computing's growth is security. This paper proposes a security approach based on cloud security. Cloud security now plays a critical part in everyone's life. Due to security concerns, data is shared between cloud service providers and other users. In order to protect the data from unwanted access, the Security Service Algorithm (SSA), which is called as MONcrypt is used to secure the information. This methodology is established on the obfuscation of data techniques. The MONcrypt SSA is a Security as a Service (SaaS) product. When compared to current obfuscation strategies, the proposed methodology offers a better efficiency and smart protection. In contrast to the current method, MONcrypt eliminates the different dimensions of information that are uploaded to cloud storage. The proposed approach not only preserves the data's secrecy but also decreases the size of the plaintext. The exi sting method does not reduce the size of data until it has been obfuscated. The findings show that the recommended MONcrypt offers optimal protection for the data stored in the cloud within the shortest amount of time. The proposed protocol ensures the confidentiality of the information while reducing the plaintext size. Current techniques should not reduce the size of evidence once it has been muddled. Based on the findings, it is clear that the proposed MONcrypt provides the highest level of protection in the shortest amount of time for rethought data.
Ahmadian, Saeed, Ebrahimi, Saba, Malki, Heidar.  2021.  Cyber-Security Enhancement of Smart Grid's Substation Using Object's Distance Estimation in Surveillance Cameras. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0631–0636.
Cyber-attacks toward cyber-physical systems are one of the main concerns of smart grid's operators. However, many of these cyber-attacks, are toward unmanned substations where the cyber-attackers needs to be close enough to substation to malfunction protection and control systems in substations, using Electromagnetic signals. Therefore, in this paper, a new threat detection algorithm is proposed to prevent possible cyber-attacks toward unmanned substations. Using surveillance camera's streams and based on You Only Look Once (YOLO) V3, suspicious objects in the image are detected. Then, using Intersection over Union (IOU) and Generalized Intersection Over Union (GIOU), threat distance is estimated. Finally, the estimated threats are categorized into three categories using color codes red, orange and green. The deep network used for detection consists of 106 convolutional layers and three output prediction with different resolutions for different distances. The pre-trained network is transferred from Darknet-53 weights trained on 80 classes.
Papaioannou, Maria, Mantas, Georgios, Essop, Aliyah, Cox, Phil, Otung, Ifiok E., Rodriguez, Jonathan.  2021.  Risk-Based Adaptive User Authentication for Mobile Passenger ID Devices for Land/Sea Border Control. 2021 IEEE 26th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–6.
New services and products are increasingly becoming integral parts of our daily lives rising our technological dependence, as well as our exposure to risks from cyber. Critical sectors such as transport are progressively depending on digital technologies to run their core operations and develop novel solutions to exploit the economic strengths of the European Union. However, despite the fact that the continuously increasing number of visitors, entering the European Union through land-border crossing points or seaports, brings tremendous economic benefits, novel border control solutions, such as mobile devices for passenger identification for land and sea border control, are essential to accurately identify passengers ``on the fly'' while ensuring their comfort. However, the highly confidential personal data managed by these devices makes them an attractive target for cyberattacks. Therefore, novel secure and usable user authentication mechanisms are required to increase the level of security of this kind of devices without interrupting border control activities. Towards this direction, we, firstly, discuss risk-based and adaptive authentication for mobile devices as a suitable approach to deal with the security vs. usability challenge. Besides that, a novel risk-based adaptive user authentication mechanism is proposed for mobile passenger identification devices used by border control officers at land and sea borders.
2022-04-13
Sulaga, D Tulasi, Maag, Angelika, Seher, Indra, Elchouemi, Amr.  2021.  Using Deep learning for network traffic prediction to secure Software networks against DDoS attacks. 2021 6th International Conference on Innovative Technology in Intelligent System and Industrial Applications (CITISIA). :1—10.
Deep learning (DL) is an emerging technology that is being used in many areas due to its effectiveness. One of its major applications is attack detection and prevention of backdoor attacks. Sampling-based measurement approaches in the software-defined network of an Internet of Things (IoT) network often result in low accuracy, high overhead, higher memory consumption, and low attack detection. This study aims to review and analyse papers on DL-based network prediction techniques against the problem of Distributed Denial of service attack (DDoS) in a secure software network. Techniques and approaches have been studied, that can effectively predict network traffic and detect DDoS attacks. Based on this review, major components are identified in each work from which an overall system architecture is suggested showing the basic processes needed. Major findings are that the DL is effective against DDoS attacks more than other state of the art approaches.
Hasan Anik, Toufiq, Danger, Jean-Luc, Diankha, Omar, Ebrahimabadi, Mohammad, Frisch, Christoph, Guilley, Sylvain, Karimi, Naghmeh, Pehl, Michael, Takarabt, Sofiane.  2021.  Testing and Reliability Enhancement of Security Primitives. 2021 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). :1–8.
The test of security primitives is particularly strategic as any bias coming from the implementation or environment can wreck havoc on the security it is intended to provide. This paper presents how some security properties are tested on leading primitives: True Random Number Generation (TRNG), Physically Unclonable Function (PUF), cryptographic primitives and Digital Sensor (DS). The test of TRNG and PUF to ensure a high level of security is mainly about the entropy assessment, which requires specific statistical tests. The security against side-channel analysis (SCA) of cryptographic primitives, like the substitution box in symmetric cryptography, is generally ensured by masking. But the hardware implementation of masking can be damaged by glitches, which create leakages on sensitive variables. A test method is to search for nets of the cryptographic netlist, which are vulnerable to glitches. The DS is an efficient primitive to detect disturbances and rise alarms in case of fault injection attack (FIA). The dimensioning of this primitive requires a precise test to take into account the environment variations including the aging.
2022-04-12
Evangelatos, Pavlos, Iliou, Christos, Mavropoulos, Thanassis, Apostolou, Konstantinos, Tsikrika, Theodora, Vrochidis, Stefanos, Kompatsiaris, Ioannis.  2021.  Named Entity Recognition in Cyber Threat Intelligence Using Transformer-based Models. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :348—353.
The continuous increase in sophistication of threat actors over the years has made the use of actionable threat intelligence a critical part of the defence against them. Such Cyber Threat Intelligence is published daily on several online sources, including vulnerability databases, CERT feeds, and social media, as well as on forums and web pages from the Surface and the Dark Web. Named Entity Recognition (NER) techniques can be used to extract the aforementioned information in an actionable form from such sources. In this paper we investigate how the latest advances in the NER domain, and in particular transformer-based models, can facilitate this process. To this end, the dataset for NER in Threat Intelligence (DNRTI) containing more than 300 pieces of threat intelligence reports from open source threat intelligence websites is used. Our experimental results demonstrate that transformer-based techniques are very effective in extracting cybersecurity-related named entities, by considerably outperforming the previous state- of-the-art approaches tested with DNRTI.
2022-04-01
Edzereiq Kamarudin, Imran, Faizal Ab Razak, Mohd, Firdaus, Ahmad, Izham Jaya, M., Ti Dun, Yau.  2021.  Performance Analysis on Denial of Service attack using UNSW-NB15 Dataset. 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). :423–426.
With the advancement of network technology, users can now easily gain access to and benefit from networks. However, the number of network violations is increasing. The main issue with this violation is that irresponsible individuals are infiltrating the network. Network intrusion can be interpreted in a variety of ways, including cyber criminals forcibly attempting to disrupt network connections, gaining unauthorized access to valuable data, and then stealing, corrupting, or destroying the data. There are already numerous systems in place to detect network intrusion. However, the systems continue to fall short in detecting and counter-attacking network intrusion attacks. This research aims to enhance the detection of Denial of service (DoS) by identifying significant features and identifying abnormal network activities more accurately. To accomplish this goal, the study proposes an Intrusion Analysis System for detecting Denial of service (DoS) network attacks using machine learning. The accuracy rate of the proposed method using random forest was demonstrated in our experimental results. It was discovered that the accuracy rate with each dataset is greater than 98.8 percent when compared to traditional approaches. Furthermore, when features are selected, the detection time is significantly reduced.
2022-03-23
Agana, Moses Adah, Edu, Joseph Ikpabi.  2021.  Predicting Cyber Attacks in a Proxy Server using Support Vector Machine (SVM) Learning Algorithm. 2021 IST-Africa Conference (IST-Africa). :1–11.
This study used the support vector machine (SVM) algorithm to predict Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks on a proxy server. Proxy-servers are prone to attacks such as DoS and DDoS and existing detection and prediction systems are inefficient. Three convex optimization problems using the Gaussian, linear and non-linear kernel methods were solved using the SVM module to detect the attacks. The SVM module and proxy server were implemented in Python and javascript respectively and made to run on a local network. Four other computers running on the same network where made to each communicate with the proxy server (two dedicated to attack the server). The server was able to detect and filter out the malicious requests from the attacking clients. Hence, the SVM module can effectively predict cyber attacks and can be integrated into any server to detect such attacks for improved security.
2022-03-22
Akowuah, Francis, Prasad, Romesh, Espinoza, Carlos Omar, Kong, Fanxin.  2021.  Recovery-by-Learning: Restoring Autonomous Cyber-physical Systems from Sensor Attacks. 2021 IEEE 27th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). :61—66.
Autonomous cyber-physical systems (CPS) are susceptible to non-invasive physical attacks such as sensor spoofing attacks that are beyond the classical cybersecurity domain. These attacks have motivated numerous research efforts on attack detection, but little attention on what to do after detecting an attack. The importance of attack recovery is emphasized by the need to mitigate the attack’s impact on a system and restore it to continue functioning. There are only a few works addressing attack recovery, but they all rely on prior knowledge of system dynamics. To overcome this limitation, we propose Recovery-by-Learning, a data-driven attack recovery framework that restores CPS from sensor attacks. The framework leverages natural redundancy among heterogeneous sensors and historical data for attack recovery. Specially, the framework consists of two major components: state predictor and data checkpointer. First, the predictor is triggered to estimate systems states after the detection of an attack. We propose a deep learning-based prediction model that exploits the temporal correlation among heterogeneous sensors. Second, the checkpointer executes when no attack is detected. We propose a double sliding window based checkpointing protocol to remove compromised data and keep trustful data as input to the state predictor. Third, we implement and evaluate the effectiveness of our framework using a realistic data set and a ground vehicle simulator. The results show that our method restores a system to continue functioning in presence of sensor attacks.
2022-03-14
Nassar, Mohamed, Khoury, Joseph, Erradi, Abdelkarim, Bou-Harb, Elias.  2021.  Game Theoretical Model for Cybersecurity Risk Assessment of Industrial Control Systems. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—7.
Supervisory Control and Data Acquisition (SCADA) and Distributed Control Systems (DCS) use advanced computing, sensors, control systems, and communication networks to monitor and control industrial processes and distributed assets. The increased connectivity of these systems to corporate networks has exposed them to new security threats and made them a prime target for cyber-attacks with the potential of causing catastrophic economic, social, and environmental damage. Recent intensified sophisticated attacks on these systems have stressed the importance of methodologies and tools to assess the security risks of Industrial Control Systems (ICS). In this paper, we propose a novel game theory model and Monte Carlo simulations to assess the cybersecurity risks of an exemplary industrial control system under realistic assumptions. We present five game enrollments where attacker and defender agents make different preferences and we analyze the final outcome of the game. Results show that a balanced defense with uniform budget spending is the best strategy against a look-ahead attacker.
2022-03-01
ElDiwany, Belal Essam, El-Sherif, Amr A., ElBatt, Tamer.  2021.  Network-Coded Wireless Powered Cellular Networks: Lifetime and Throughput Analysis. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
In this paper, we study a wireless powered cellular network (WPCN) supported with network coding capability. In particular, we consider a network consisting of k cellular users (CUs) served by a hybrid access point (HAP) that takes over energy transfer to the users on top of information transmission over both the uplink (UL) and downlink (DL). Each CU has k+1 states representing its communication behavior, and collectively are referred to as the user demand profile. Opportunistically, when the CUs have information to be exchanged through the HAP, it broadcasts this information in coded format to the exchanging pairs, resulting in saving time slots over the DL. These saved slots are then utilized by the HAP to prolong the network lifetime and enhance the network throughput. We quantify, analytically, the performance gain of our network-coded WPCN over the conventional one, that does not employ network coding, in terms of network lifetime and throughput. We consider the two extreme cases of using all the saved slots either for energy boosting or throughput enhancement. In addition, a lifetime/throughput optimization is carried out by the HAP for balancing the saved slots assignment in an optimized fashion, where the problem is formulated as a mixed-integer linear programming optimization problem. Numerical results exhibit the network performance gains from the lifetime and throughput perspectives, for a uniform user demand profile across all CUs. Moreover, the effect of biasing the user demand profile of some CUs in the network reveals considerable improvement in the network performance gains.
2022-02-24
Guiza, Ouijdane, Mayr-Dorn, Christoph, Weichhart, Georg, Mayrhofer, Michael, Zangi, Bahman Bahman, Egyed, Alexander, Fanta, Björn, Gieler, Martin.  2021.  Automated Deviation Detection for Partially-Observable Human-Intensive Assembly Processes. 2021 IEEE 19th International Conference on Industrial Informatics (INDIN). :1–8.
Unforeseen situations on the shopfloor cause the assembly process to divert from its expected progress. To be able to overcome these deviations in a timely manner, assembly process monitoring and early deviation detection are necessary. However, legal regulations and union policies often limit the direct monitoring of human-intensive assembly processes. Grounded in an industry use case, this paper outlines a novel approach that, based on indirect privacy-respecting monitored data from the shopfloor, enables the near real-time detection of multiple types of process deviations. In doing so, this paper specifically addresses uncertainties stemming from indirect shopfloor observations and how to reason in their presence.
2022-02-22
Olivier, Stephen L., Ellingwood, Nathan D., Berry, Jonathan, Dunlavy, Daniel M..  2021.  Performance Portability of an SpMV Kernel Across Scientific Computing and Data Science Applications. 2021 IEEE High Performance Extreme Computing Conference (HPEC). :1—8.
Both the data science and scientific computing communities are embracing GPU acceleration for their most demanding workloads. For scientific computing applications, the massive volume of code and diversity of hardware platforms at supercomputing centers has motivated a strong effort toward performance portability. This property of a program, denoting its ability to perform well on multiple architectures and varied datasets, is heavily dependent on the choice of parallel programming model and which features of the programming model are used. In this paper, we evaluate performance portability in the context of a data science workload in contrast to a scientific computing workload, evaluating the same sparse matrix kernel on both. Among our implementations of the kernel in different performance-portable programming models, we find that many struggle to consistently achieve performance improvements using the GPU compared to simple one-line OpenMP parallelization on high-end multicore CPUs. We show one that does, and its performance approaches and sometimes even matches that of vendor-provided GPU math libraries.
Eisenbarth, Jean-Philippe, Cholez, Thibault, Perrin, Olivier.  2021.  An open measurement dataset on the Bitcoin P2P Network. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :643—647.
The Bitcoin blockchain is managed by an underlying peer-to-peer network. This network is responsible for the propagation of transactions carried out by users via the blocks (which contain the validated transactions), and to ensure consensus between the different nodes. The quality and safety of this network are therefore particularly essential. In this work, we present an open dataset on the peers composing the Bitcoin P2P Network that was made following a well defined and reproducible methodology. We also provide a first analysis of the dataset on three criteria: the number of public nodes and their client version and geographical distribution.
2022-02-07
Ben Abdel Ouahab, Ikram, Elaachak, Lotfi, Alluhaidan, Yasser A., Bouhorma, Mohammed.  2021.  A new approach to detect next generation of malware based on machine learning. 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :230–235.
In these days, malware attacks target different kinds of devices as IoT, mobiles, servers even the cloud. It causes several hardware damages and financial losses especially for big companies. Malware attacks represent a serious issue to cybersecurity specialists. In this paper, we propose a new approach to detect unknown malware families based on machine learning classification and visualization technique. A malware binary is converted to grayscale image, then for each image a GIST descriptor is used as input to the machine learning model. For the malware classification part we use 3 machine learning algorithms. These classifiers are so efficient where the highest precision reach 98%. Once we train, test and evaluate models we move to simulate 2 new malware families. We do not expect a good prediction since the model did not know the family; however our goal is to analyze the behavior of our classifiers in the case of new family. Finally, we propose an approach using a filter to know either the classification is normal or it's a zero-day malware.
Abdelmonem, Salma, Seddik, Shahd, El-Sayed, Rania, Kaseb, Ahmed S..  2021.  Enhancing Image-Based Malware Classification Using Semi-Supervised Learning. 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :125–128.
Malicious software (malware) creators are constantly mutating malware files in order to avoid detection, resulting in hundreds of millions of new malware every year. Therefore, most malware files are unlabeled due to the time and cost needed to label them manually. This makes it very challenging to perform malware detection, i.e., deciding whether a file is malware or not, and malware classification, i.e., determining the family of the malware. Most solutions use supervised learning (e.g., ResNet and VGG) whose accuracy degrades significantly with the lack of abundance of labeled data. To solve this problem, this paper proposes a semi-supervised learning model for image-based malware classification. In this model, malware files are represented as grayscale images, and semi-supervised learning is carefully selected to handle the plethora of unlabeled data. Our proposed model is an enhanced version of the ∏-model, which makes it more accurate and consistent. Experiments show that our proposed model outperforms the original ∏-model by 4% in accuracy and three other supervised models by 6% in accuracy especially when the ratio of labeled samples is as low as 20%.
Elbahadır, Hamza, Erdem, Ebubekir.  2021.  Modeling Intrusion Detection System Using Machine Learning Algorithms in Wireless Sensor Networks. 2021 6th International Conference on Computer Science and Engineering (UBMK). :401–406.
Wireless sensor networks (WSN) are used to perceive many data such as temperature, vibration, pressure in the environment and to produce results; it is widely used, including in critical fields such as military, intelligence and health. However, because of WSNs have different infrastructure and architecture than traditional networks, different security measures must be taken. In this study, an intrusion detection system (IDS) is modeled to ensure WSN security. Since the signature, misuse and anomaly based detection methods for intrusion detection systems are insufficient to provide security alone, a hybrid model is proposed in which these methods are used together. In the hybrid model, anomaly rules were defined for attack detection, and machine learning algorithms BayesNet, J48 and Random Forest were used to classify normal and abnormal traffic. Unlike the studies in the literature, CSE-CIC-IDS2018, the most up-to-date data set, was used to create attack profiles. Considering both hardware constraints and battery capacities of WSNs; the data was pre-processed in accordance with data mining principles. The results showed that the developed model has high accuracy and low false alarm rate.
Chkirbene, Zina, Hamila, Ridha, Erbad, Aiman, Kiranyaz, Serkan, Al-Emadi, Nasser, Hamdi, Mounir.  2021.  Cooperative Machine Learning Techniques for Cloud Intrusion Detection. 2021 International Wireless Communications and Mobile Computing (IWCMC). :837–842.
Cloud computing is attracting a lot of attention in the past few years. Although, even with its wide acceptance, cloud security is still one of the most essential concerns of cloud computing. Many systems have been proposed to protect the cloud from attacks using attack signatures. Most of them may seem effective and efficient; however, there are many drawbacks such as the attack detection performance and the system maintenance. Recently, learning-based methods for security applications have been proposed for cloud anomaly detection especially with the advents of machine learning techniques. However, most researchers do not consider the attack classification which is an important parameter for proposing an appropriate countermeasure for each attack type. In this paper, we propose a new firewall model called Secure Packet Classifier (SPC) for cloud anomalies detection and classification. The proposed model is constructed based on collaborative filtering using two machine learning algorithms to gain the advantages of both learning schemes. This strategy increases the learning performance and the system's accuracy. To generate our results, a publicly available dataset is used for training and testing the performance of the proposed SPC. Our results show that the accuracy of the SPC model increases the detection accuracy by 20% compared to the existing machine learning algorithms while keeping a high attack detection rate.
Todorov, Z., Efnusheva, D., Nikolic, T..  2021.  FPGA Implementation of Computer Network Security Protection with Machine Learning. 2021 IEEE 32nd International Conference on Microelectronics (MIEL). :263–266.
Network intrusion detection systems (NIDS) are widely used solutions targeting the security of any network device connected to the Internet and are taking the lead in the battle against intruders. This paper addresses the network security issues by implementing a hardware-based NIDS solution with a Naïve Bayes machine learning (ML) algorithm for classification using NSL Knowledge Discovery in Databases (KDD) dataset. The proposed FPGA implementation of the Naive Bayes classifier focuses on low latency and provides intrusion detection in just 240ns, with accuracy/precision of 70/97%, occupying 1 % of the Virtex7 VC709 FPGA chip area.
Or-Meir, Ori, Cohen, Aviad, Elovici, Yuval, Rokach, Lior, Nissim, Nir.  2021.  Pay Attention: Improving Classification of PE Malware Using Attention Mechanisms Based on System Call Analysis. 2021 International Joint Conference on Neural Networks (IJCNN). :1–8.
Malware poses a threat to computing systems worldwide, and security experts work tirelessly to detect and classify malware as accurately and quickly as possible. Since malware can use evasion techniques to bypass static analysis and security mechanisms, dynamic analysis methods are more useful for accurately analyzing the behavioral patterns of malware. Previous studies showed that malware behavior can be represented by sequences of executed system calls and that machine learning algorithms can leverage such sequences for the task of malware classification (a.k.a. malware categorization). Accurate malware classification is helpful for malware signature generation and is thus beneficial to antivirus vendors; this capability is also valuable to organizational security experts, enabling them to mitigate malware attacks and respond to security incidents. In this paper, we propose an improved methodology for malware classification, based on analyzing sequences of system calls invoked by malware in a dynamic analysis environment. We show that adding an attention mechanism to a LSTM model improves accuracy for the task of malware classification, thus outperforming the state-of-the-art algorithm by up to 6%. We also show that the transformer architecture can be used to analyze very long sequences with significantly lower time complexity for training and prediction. Our proposed method can serve as the basis for a decision support system for security experts, for the task of malware categorization.
2022-02-03
Esterwood, Connor, Robert, Lionel P..  2021.  Do You Still Trust Me? Human-Robot Trust Repair Strategies 2021 30th IEEE International Conference on Robot Human Interactive Communication (RO-MAN). :183—188.
Trust is vital to promoting human and robot collaboration, but like human teammates, robots make mistakes that undermine trust. As a result, a human’s perception of his or her robot teammate’s trustworthiness can dramatically decrease [1], [2], [3], [4]. Trustworthiness consists of three distinct dimensions: ability (i.e. competency), benevolence (i.e. concern for the trustor) and integrity (i.e. honesty) [5], [6]. Taken together, decreases in trustworthiness decreases trust in the robot [7]. To address this, we conducted a 2 (high vs. low anthropomorphism) x 4 (trust repair strategies) between-subjects experiment. Preliminary results of the first 164 participants (between 19 and 24 per cell) highlight which repair strategies are effective relative to ability, integrity and benevolence and the robot’s anthropomorphism. Overall, this paper contributes to the HRI trust repair literature.
2022-01-31
Haney, Oliver, ElAarag, Hala.  2021.  Secure Suite: An Open-Source Service for Internet Security. SoutheastCon 2021. :1—7.
Internet security is constantly at risk as a result of the fast developing and highly sophisticated exploitation methods. These attacks use numerous media to take advantage of the most vulnerable of Internet users. Phishing, spam calling, unsecure content and other means of intrusion threaten Internet users every day. In order to maintain the security and privacy of sensitive user data, the user must pay for services that include the storage and generation of secure passwords, monitoring internet traffic to discourage navigation to malicious websites, among other services. Some people do not have the money to purchase privacy protection services and others find convoluted euphemisms baked into privacy policies quite confusing. In response to this problem, we developed an Internet security software package, Secure Suite, which we provide as open source and hence free of charge. Users can easily deploy and manage Secure Suite. It is composed of a password manager, a malicious URL detection service, dubbed MalURLNet, a URL extender, data visualization tools, a browser extension to interact with the web app, and utility tools to maintain data integrity. MalURLNet is one of the main components of Secure Suite. It utilizes deep learning and other open-source software to mitigate security threats by identifying malicious URLs. We exhaustively tested our proposed MalURLNet service. Our studies show that MalURLNet outperforms four other well-known URL classifiers in terms of accuracy, loss, precision, recall, and F1-Score.
El-Allami, Rida, Marchisio, Alberto, Shafique, Muhammad, Alouani, Ihsen.  2021.  Securing Deep Spiking Neural Networks against Adversarial Attacks through Inherent Structural Parameters. 2021 Design, Automation Test in Europe Conference Exhibition (DATE). :774–779.
Deep Learning (DL) algorithms have gained popularity owing to their practical problem-solving capacity. However, they suffer from a serious integrity threat, i.e., their vulnerability to adversarial attacks. In the quest for DL trustworthiness, recent works claimed the inherent robustness of Spiking Neural Networks (SNNs) to these attacks, without considering the variability in their structural spiking parameters. This paper explores the security enhancement of SNNs through internal structural parameters. Specifically, we investigate the SNNs robustness to adversarial attacks with different values of the neuron's firing voltage thresholds and time window boundaries. We thoroughly study SNNs security under different adversarial attacks in the strong white-box setting, with different noise budgets and under variable spiking parameters. Our results show a significant impact of the structural parameters on the SNNs' security, and promising sweet spots can be reached to design trustworthy SNNs with 85% higher robustness than a traditional non-spiking DL system. To the best of our knowledge, this is the first work that investigates the impact of structural parameters on SNNs robustness to adversarial attacks. The proposed contributions and the experimental framework is available online 11https://github.com/rda-ela/SNN-Adversarial-Attacks to the community for reproducible research.