Biblio
Performing a live digital forensics investigation on a running system is challenging due to the time pressure under which decisions have to be made. Newly proliferating and frequently applied types of malware (e.g., fileless malware) increase the need to conduct digital forensic investigations in real-time. In the course of these investigations, forensic experts are confronted with a wide range of different forensic tools. The decision, which of those are suitable for the current situation, is often based on the cyber forensics experts’ experience. Currently, there is no reliable automated solution to support this decision-making. Therefore, we derive requirements for visually supporting the decision-making process for live forensic investigations and introduce a research prototype that provides visual guidance for cyber forensic experts during a live digital forensics investigation. Our prototype collects relevant core information for live digital forensics and provides visual representations for connections between occurring events, developments over time, and detailed information on specific events. To show the applicability of our approach, we analyze an exemplary use case using the prototype and demonstrate the support through our approach.
This paper presents some of our first experiences and findings in the ARPA-E project ReNew100, which is to develop an operator support system to enable stable operation of power system with 100% non-synchronous (NS) generation. The key to 100% NS system, as found in many recent studies, is to establish the grid frequency reference using grid-forming (GFM) inverters. In this paper, we demonstrate in Electro-Magnetic-Transient (EMT) simulations, based on Hawai'i big island system with 100% NS capacity, that a system can be operated stably with the help of GFM inverters and appropriate controller parameters for the inverters. The dynamic security optimization (DSO) is introduced for optimizing the inverter control parameters to improve stability of the system towards N-1 contingencies. DSO is verified for five critical N-1 contingencies of big island system identified by Hawaiian Electric. The simulation results show significant stability improvement from DSO. The results in this paper share some insight, and provide a promising solution for operating grid in general with high penetration or 100% of NS generation.
In cyberspace, a digital signature is a mathematical technique that plays a significant role, especially in validating the authenticity of digital messages, emails, or documents. Furthermore, the digital signature mechanism allows the recipient to trust the authenticity of the received message that is coming from the said sender and that the message was not altered in transit. Moreover, a digital signature provides a solution to the problems of tampering and impersonation in digital communications. In a real-life example, it is equivalent to a handwritten signature or stamp seal, but it offers more security. This paper proposes a scheme to enable users to digitally sign their communications by validating their identity through users’ mobile devices. This is done by utilizing the user’s ambient Wi-Fi-enabled devices. Moreover, the proposed scheme depends on something that a user possesses (i.e., Wi-Fi-enabled devices), and something that is in the user’s environment (i.e., ambient Wi-Fi access points) where the validation process is implemented, in a way that requires no effort from users and removes the "weak link" from the validation process. The proposed scheme was experimentally examined.