Visible to the public Biblio

Found 758 results

Filters: First Letter Of Last Name is E  [Clear All Filters]
2021-02-23
Fan, W., Chang, S.-Y., Emery, S., Zhou, X..  2020.  Blockchain-based Distributed Banking for Permissioned and Accountable Financial Transaction Processing. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—9.

Distributed banking platforms and services forgo centralized banks to process financial transactions. For example, M-Pesa provides distributed banking service in the developing regions so that the people without a bank account can deposit, withdraw, or transfer money. The current distributed banking systems lack the transparency in monitoring and tracking of distributed banking transactions and thus do not support auditing of distributed banking transactions for accountability. To address this issue, this paper proposes a blockchain-based distributed banking (BDB) scheme, which uses blockchain technology to leverage its built-in properties to record and track immutable transactions. BDB supports distributed financial transaction processing but is significantly different from cryptocurrencies in its design properties, simplicity, and computational efficiency. We implement a prototype of BDB using smart contract and conduct experiments to show BDB's effectiveness and performance. We further compare our prototype with the Ethereum cryptocurrency to highlight the fundamental differences and demonstrate the BDB's superior computational efficiency.

2021-02-22
Eftimie, S., Moinescu, R., Rǎcuciu, C..  2020.  Insider Threat Detection Using Natural Language Processing and Personality Profiles. 2020 13th International Conference on Communications (COMM). :325–330.
This work represents an interdisciplinary effort to proactively identify insider threats, using natural language processing and personality profiles. Profiles were developed for the relevant insider threat types using the five-factor model of personality and were used in a proof-of-concept detection system. The system employs a third-party cloud service that uses natural language processing to analyze personality profiles based on personal content. In the end, an assessment was made over the feasibility of the system using a public dataset.
2021-02-16
Liu, F., Eugenio, E., Jin, I. H., Bowen, C..  2020.  Differentially Private Generation of Social Networks via Exponential Random Graph Models. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1695—1700.
Many social networks contain sensitive relational information. One approach to protect the sensitive relational information while offering flexibility for social network research and analysis is to release synthetic social networks at a pre-specified privacy risk level, given the original observed network. We propose the DP-ERGM procedure that synthesizes networks that satisfy the differential privacy (DP) via the exponential random graph model (EGRM). We apply DP-ERGM to a college student friendship network and compare its original network information preservation in the generated private networks with two other approaches: differentially private DyadWise Randomized Response (DWRR) and Sanitization of the Conditional probability of Edge given Attribute classes (SCEA). The results suggest that DP-EGRM preserves the original information significantly better than DWRR and SCEA in both network statistics and inferences from ERGMs and latent space models. In addition, DP-ERGM satisfies the node DP, a stronger notion of privacy than the edge DP that DWRR and SCEA satisfy.
Shi, Y., Sagduyu, Y. E., Erpek, T..  2020.  Reinforcement Learning for Dynamic Resource Optimization in 5G Radio Access Network Slicing. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.
The paper presents a reinforcement learning solution to dynamic resource allocation for 5G radio access network slicing. Available communication resources (frequency-time blocks and transmit powers) and computational resources (processor usage) are allocated to stochastic arrivals of network slice requests. Each request arrives with priority (weight), throughput, computational resource, and latency (deadline) requirements, and if feasible, it is served with available communication and computational resources allocated over its requested duration. As each decision of resource allocation makes some of the resources temporarily unavailable for future, the myopic solution that can optimize only the current resource allocation becomes ineffective for network slicing. Therefore, a Q-learning solution is presented to maximize the network utility in terms of the total weight of granted network slicing requests over a time horizon subject to communication and computational constraints. Results show that reinforcement learning provides major improvements in the 5G network utility relative to myopic, random, and first come first served solutions. While reinforcement learning sustains scalable performance as the number of served users increases, it can also be effectively used to assign resources to network slices when 5G needs to share the spectrum with incumbent users that may dynamically occupy some of the frequency-time blocks.
2021-02-15
Karthikeyan, S. Paramasivam, El-Razouk, H..  2020.  Horizontal Correlation Analysis of Elliptic Curve Diffie Hellman. 2020 3rd International Conference on Information and Computer Technologies (ICICT). :511–519.
The world is facing a new revolutionary technology transition, Internet of things (IoT). IoT systems requires secure connectivity of distributed entities, including in-field sensors. For such external devices, Side Channel Analysis poses a potential threat as it does not require complete knowledge about the crypto algorithm. In this work, we perform Horizontal Correlation Power Analysis (HCPA) which is a type of Side Channel Analysis (SCA) over the Elliptic Curve Diffie Hellman (ECDH) key exchange protocol. ChipWhisperer (CW) by NewAE Technologies is an open source toolchain which is utilized to perform the HCPA by using CW toolchain. To best of our knowledge, this is the first attempt to implemented ECDH on Artix-7 FPGA for HCPA. We compare our correlation results with the results from AES -128 bits provided by CW. Our point of attack is the Double and Add algorithm which is used to perform Scalar multiplication in ECC. We obtain a maximum correlation of 7% for the key guess using the HCPA. We also discuss about the possible cause for lower correlation and few potentials ways to improve it. In Addition to HCPA we also perform Simple Power Analysis (SPA) (visual) for ECDH, to guess the trailing zeros in the 128-bit secret key for different power traces.
Hemmati, A., Nasiri, H., Haeri, M. A., Ebadzadeh, M. M..  2020.  A Novel Correlation-Based CUR Matrix Decomposition Method. 2020 6th International Conference on Web Research (ICWR). :172–176.
Web data such as documents, images, and videos are examples of large matrices. To deal with such matrices, one may use matrix decomposition techniques. As such, CUR matrix decomposition is an important approximation technique for high-dimensional data. It approximates a data matrix by selecting a few of its rows and columns. However, a problem faced by most CUR decomposition matrix methods is that they ignore the correlation among columns (rows), which gives them lesser chance to be selected; even though, they might be appropriate candidates for basis vectors. In this paper, a novel CUR matrix decomposition method is proposed, in which calculation of the correlation, boosts the chance of selecting such columns (rows). Experimental results indicate that in comparison with other methods, this one has had higher accuracy in matrix approximation.
2021-02-01
Ng, M., Coopamootoo, K. P. L., Toreini, E., Aitken, M., Elliot, K., Moorsel, A. van.  2020.  Simulating the Effects of Social Presence on Trust, Privacy Concerns Usage Intentions in Automated Bots for Finance. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :190–199.
FinBots are chatbots built on automated decision technology, aimed to facilitate accessible banking and to support customers in making financial decisions. Chatbots are increasing in prevalence, sometimes even equipped to mimic human social rules, expectations and norms, decreasing the necessity for human-to-human interaction. As banks and financial advisory platforms move towards creating bots that enhance the current state of consumer trust and adoption rates, we investigated the effects of chatbot vignettes with and without socio-emotional features on intention to use the chatbot for financial support purposes. We conducted a between-subject online experiment with N = 410 participants. Participants in the control group were provided with a vignette describing a secure and reliable chatbot called XRO23, whereas participants in the experimental group were presented with a vignette describing a secure and reliable chatbot that is more human-like and named Emma. We found that Vignette Emma did not increase participants' trust levels nor lowered their privacy concerns even though it increased perception of social presence. However, we found that intention to use the presented chatbot for financial support was positively influenced by perceived humanness and trust in the bot. Participants were also more willing to share financially-sensitive information such as account number, sort code and payments information to XRO23 compared to Emma - revealing a preference for a technical and mechanical FinBot in information sharing. Overall, this research contributes to our understanding of the intention to use chatbots with different features as financial technology, in particular that socio-emotional support may not be favoured when designed independently of financial function.
Papadopoulos, A. V., Esterle, L..  2020.  Situational Trust in Self-aware Collaborating Systems. 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :91–94.
Trust among humans affects the way we interact with each other. In autonomous systems, this trust is often predefined and hard-coded before the systems are deployed. However, when systems encounter unfolding situations, requiring them to interact with others, a notion of trust will be inevitable. In this paper, we discuss trust as a fundamental measure to enable an autonomous system to decide whether or not to interact with another system, whether biological or artificial. These decisions become increasingly important when continuously integrating with others during runtime.
2021-01-28
Esmeel, T. K., Hasan, M. M., Kabir, M. N., Firdaus, A..  2020.  Balancing Data Utility versus Information Loss in Data-Privacy Protection using k-Anonymity. 2020 IEEE 8th Conference on Systems, Process and Control (ICSPC). :158—161.

Data privacy has been an important area of research in recent years. Dataset often consists of sensitive data fields, exposure of which may jeopardize interests of individuals associated with the data. In order to resolve this issue, privacy techniques can be used to hinder the identification of a person through anonymization of the sensitive data in the dataset to protect sensitive information, while the anonymized dataset can be used by the third parties for analysis purposes without obstruction. In this research, we investigated a privacy technique, k-anonymity for different values of on different number columns of the dataset. Next, the information loss due to k-anonymity is computed. The anonymized files go through the classification process by some machine-learning algorithms i.e., Naive Bayes, J48 and neural network in order to check a balance between data anonymity and data utility. Based on the classification accuracy, the optimal values of and are obtained, and thus, the optimal and can be used for k-anonymity algorithm to anonymize optimal number of columns of the dataset.

Inshi, S., Chowdhury, R., Elarbi, M., Ould-Slimane, H., Talhi, C..  2020.  LCA-ABE: Lightweight Context-Aware Encryption for Android Applications. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—6.

The evolving of context-aware applications are becoming more readily available as a major driver of the growth of future connected smart, autonomous environments. However, with the increasing of security risks in critical shared massive data capabilities and the increasing regulation requirements on privacy, there is a significant need for new paradigms to manage security and privacy compliances. These challenges call for context-aware and fine-grained security policies to be enforced in such dynamic environments in order to achieve efficient real-time authorization between applications and connected devices. We propose in this work a novel solution that aims to provide context-aware security model for Android applications. Specifically, our proposition provides automated context-aware access control model and leverages Attribute-Based Encryption (ABE) to secure data communications. Thorough experiments have been performed and the evaluation results demonstrate that the proposed solution provides an effective lightweight adaptable context-aware encryption model.

2021-01-25
Stan, O., Bitton, R., Ezrets, M., Dadon, M., Inokuchi, M., Yoshinobu, O., Tomohiko, Y., Elovici, Y., Shabtai, A..  2020.  Extending Attack Graphs to Represent Cyber-Attacks in Communication Protocols and Modern IT Networks. IEEE Transactions on Dependable and Secure Computing. :1–1.
An attack graph is a method used to enumerate the possible paths that an attacker can take in the organizational network. MulVAL is a known open-source framework used to automatically generate attack graphs. MulVAL's default modeling has two main shortcomings. First, it lacks the ability to represent network protocol vulnerabilities, and thus it cannot be used to model common network attacks, such as ARP poisoning. Second, it does not support advanced types of communication, such as wireless and bus communication, and thus it cannot be used to model cyber-attacks on networks that include IoT devices or industrial components. In this paper, we present an extended network security model for MulVAL that: (1) considers the physical network topology, (2) supports short-range communication protocols, (3) models vulnerabilities in the design of network protocols, and (4) models specific industrial communication architectures. Using the proposed extensions, we were able to model multiple attack techniques including: spoofing, man-in-the-middle, and denial of service attacks, as well as attacks on advanced types of communication. We demonstrate the proposed model in a testbed which implements a simplified network architecture comprised of both IT and industrial components
Merouane, E. M., Escudero, C., Sicard, F., Zamai, E..  2020.  Aging Attacks against Electro-Mechanical Actuators from Control Signal Manipulation. 2020 IEEE International Conference on Industrial Technology (ICIT). :133–138.
The progress made in terms of controller technologies with the introduction of remotely-accessibility capacity in the digital controllers has opened the door to new cybersecurity threats on the Industrial Control Systems (ICSs). Among them, some aim at damaging the ICS's physical system. In this paper, a corrupted controller emitting a non-legitimate Pulse Width Modulation control signal to an Electro-Mechanical Actuator (EMA) is considered. The attacker's capabilities for accelerating the EMA's aging by inducing Partial Discharges (PDs) are investigated. A simplified model is considered for highlighting the influence of the carrier frequency of the control signal over the amplitude and the repetition of the PDs involved in the EMA's aging.
2021-01-18
Ergün, S., Tanrıseven, S..  2020.  Random Number Generator Based on Skew-tent Map and Chaotic Sampling. 2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). :224–227.
In this paper a novel random number generator is introduced and it is based on the Skew-tent discrete-time chaotic map. The RNG presented in this paper is made using the discrete-time chaotic map and chaotic sampling of regular waveform method together to increase the throughput and statistical quality of the output sequence. An explanation of the arithmetic model for the proposed design is given in this paper with an algebra confirmation for the generated bit stream that shows how it passes the primary four tests of the FIPS-140-2 test suit successfully. Finally the bit stream resulting from the hardware implementation of the circuit in a similar method has been confirmed to pass all NIST-800-22 test with no post processing. A presentation of the experimentally obtained results is given therefor proving the the circuit’s usefulness. The proposed RNG can be built with the integrated circuit.
Ibrahim, A. K., Hagras, E. A. A. A., Alfhar, A., El-Kamchochi, H. A..  2020.  Dynamic Chaotic Biometric Identity Isomorphic Elliptic Curve (DCBI-IEC) for Crypto Images. 2020 2nd International Conference on Computer Communication and the Internet (ICCCI). :119–125.

In this paper, a novel Dynamic Chaotic Biometric Identity Isomorphic Elliptic Curve (DCBI-IEC) has been introduced for Image Encryption. The biometric digital identity is extracted from the user fingerprint image as fingerprint minutia data incorporated with the chaotic logistic map and hence, a new DCBDI-IEC has been suggested. DCBI-IEC is used to control the key schedule for all encryption and decryption processing. Statistical analysis, differential analysis and key sensitivity test are performed to estimate the security strengths of the proposed DCBI-IEC system. The experimental results show that the proposed algorithm is robust against common signal processing attacks and provides a high security level for image encryption application.

2021-01-15
Ebrahimi, M., Samtani, S., Chai, Y., Chen, H..  2020.  Detecting Cyber Threats in Non-English Hacker Forums: An Adversarial Cross-Lingual Knowledge Transfer Approach. 2020 IEEE Security and Privacy Workshops (SPW). :20—26.

The regularity of devastating cyber-attacks has made cybersecurity a grand societal challenge. Many cybersecurity professionals are closely examining the international Dark Web to proactively pinpoint potential cyber threats. Despite its potential, the Dark Web contains hundreds of thousands of non-English posts. While machine translation is the prevailing approach to process non-English text, applying MT on hacker forum text results in mistranslations. In this study, we draw upon Long-Short Term Memory (LSTM), Cross-Lingual Knowledge Transfer (CLKT), and Generative Adversarial Networks (GANs) principles to design a novel Adversarial CLKT (A-CLKT) approach. A-CLKT operates on untranslated text to retain the original semantics of the language and leverages the collective knowledge about cyber threats across languages to create a language invariant representation without any manual feature engineering or external resources. Three experiments demonstrate how A-CLKT outperforms state-of-the-art machine learning, deep learning, and CLKT algorithms in identifying cyber-threats in French and Russian forums.

Zhang, N., Ebrahimi, M., Li, W., Chen, H..  2020.  A Generative Adversarial Learning Framework for Breaking Text-Based CAPTCHA in the Dark Web. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1—6.

Cyber threat intelligence (CTI) necessitates automated monitoring of dark web platforms (e.g., Dark Net Markets and carding shops) on a large scale. While there are existing methods for collecting data from the surface web, large-scale dark web data collection is commonly hindered by anti-crawling measures. Text-based CAPTCHA serves as the most prohibitive type of these measures. Text-based CAPTCHA requires the user to recognize a combination of hard-to-read characters. Dark web CAPTCHA patterns are intentionally designed to have additional background noise and variable character length to prevent automated CAPTCHA breaking. Existing CAPTCHA breaking methods cannot remedy these challenges and are therefore not applicable to the dark web. In this study, we propose a novel framework for breaking text-based CAPTCHA in the dark web. The proposed framework utilizes Generative Adversarial Network (GAN) to counteract dark web-specific background noise and leverages an enhanced character segmentation algorithm. Our proposed method was evaluated on both benchmark and dark web CAPTCHA testbeds. The proposed method significantly outperformed the state-of-the-art baseline methods on all datasets, achieving over 92.08% success rate on dark web testbeds. Our research enables the CTI community to develop advanced capabilities of large-scale dark web monitoring.

Liu, Y., Lin, F. Y., Ahmad-Post, Z., Ebrahimi, M., Zhang, N., Hu, J. L., Xin, J., Li, W., Chen, H..  2020.  Identifying, Collecting, and Monitoring Personally Identifiable Information: From the Dark Web to the Surface Web. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1—6.

Personally identifiable information (PII) has become a major target of cyber-attacks, causing severe losses to data breach victims. To protect data breach victims, researchers focus on collecting exposed PII to assess privacy risk and identify at-risk individuals. However, existing studies mostly rely on exposed PII collected from either the dark web or the surface web. Due to the wide exposure of PII on both the dark web and surface web, collecting from only the dark web or the surface web could result in an underestimation of privacy risk. Despite its research and practical value, jointly collecting PII from both sources is a non-trivial task. In this paper, we summarize our effort to systematically identify, collect, and monitor a total of 1,212,004,819 exposed PII records across both the dark web and surface web. Our effort resulted in 5.8 million stolen SSNs, 845,000 stolen credit/debit cards, and 1.2 billion stolen account credentials. From the surface web, we identified and collected over 1.3 million PII records of the victims whose PII is exposed on the dark web. To the best of our knowledge, this is the largest academic collection of exposed PII, which, if properly anonymized, enables various privacy research inquiries, including assessing privacy risk and identifying at-risk populations.

Kharbat, F. F., Elamsy, T., Mahmoud, A., Abdullah, R..  2019.  Image Feature Detectors for Deepfake Video Detection. 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA). :1—4.
Detecting DeepFake videos are one of the challenges in digital media forensics. This paper proposes a method to detect deepfake videos using Support Vector Machine (SVM) regression. The SVM classifier can be trained with feature points extracted using one of the different feature-point detectors such as HOG, ORB, BRISK, KAZE, SURF, and FAST algorithms. A comprehensive test of the proposed method is conducted using a dataset of original and fake videos from the literature. Different feature point detectors are tested. The result shows that the proposed method of using feature-detector-descriptors for training the SVM can be effectively used to detect false videos.
2020-12-21
Enkhtaivan, B., Inoue, A..  2020.  Mediating Data Trustworthiness by Using Trusted Hardware between IoT Devices and Blockchain. 2020 IEEE International Conference on Smart Internet of Things (SmartIoT). :314–318.
In recent years, with the progress of data analysis methods utilizing artificial intelligence (AI) technology, concepts of smart cities collecting data from IoT devices and creating values by analyzing it have been proposed. However, making sure that the data is not tampered with is of the utmost importance. One way to do this is to utilize blockchain technology to record and trace the history of the data. Park and Kim proposed ensuring the trustworthiness of the data by utilizing an IoT device with a trusted execution environment (TEE). Also, Guan et al. proposed authenticating an IoT device and mediating data using a TEE. For the authentication, they use the physically unclonable function of the IoT device. Usually, IoT devices suffer from the lack of resources necessary for creating transactions for the blockchain ledger. In this paper, we present a secure protocol in which a TEE acts as a proxy to the IoT devices and creates the necessary transactions for the blockchain. We use an authenticated encryption method on the data transmission between the IoT device and TEE to authenticate the device and ensure the integrity and confidentiality of the data generated by the IoT devices.
Seliem, M., Elgazzar, K..  2020.  LPA-SDP: A Lightweight Privacy-Aware Service Discovery Protocol for IoT Environments. 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). :1–7.
Latest forecasts show that 50 billion devices will be connected to the Internet by 2020. These devices will provide ubiquitous data access and enable smarter interactions in all aspects of our everyday life, including vital domains such as healthcare and battlefields, where privacy is a key requirement. With the increasing adoption of IoT and the explosion of these resource-constrained devices, manual discovery and configuration become significantly challenging. Despite there is a number of resource discovery protocols that can be efficiently used in IoT deployments, none of these protocols provides any privacy consideration. This paper presents LPA-SDT, a novel technique for service discovery that builds privacy into the design from the ground up. Performance evaluation demonstrates that LPA-SDT outperforms state-of-the-art discovery techniques for resource-constrained environments while preserving user and data privacy.
2020-12-15
Eamsa-ard, T., Seesaard, T., Kerdcharoen, T..  2018.  Wearable Sensor of Humanoid Robot-Based Textile Chemical Sensors for Odor Detection and Tracking. 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST). :1—4.

This paper revealed the development and implementation of the wearable sensors based on transient responses of textile chemical sensors for odorant detection system as wearable sensor of humanoid robot. The textile chemical sensors consist of nine polymer/CNTs nano-composite gas sensors which can be divided into three different prototypes of the wearable humanoid robot; (i) human axillary odor monitoring, (ii) human foot odor tracking, and (iii) wearable personal gas leakage detection. These prototypes can be integrated into high-performance wearable wellness platform such as smart clothes, smart shoes and wearable pocket toxic-gas detector. While operating mode has been designed to use ZigBee wireless communication technology for data acquisition and monitoring system. Wearable humanoid robot offers several platforms that can be applied to investigate the role of individual scent produced by different parts of the human body such as axillary odor and foot odor, which have potential health effects from abnormal or offensive body odor. Moreover, wearable personal safety and security component in robot is also effective for detecting NH3 leakage in environment. Preliminary results with nine textile chemical sensors for odor biomarker and NH3 detection demonstrates the feasibility of using the wearable humanoid robot to distinguish unpleasant odor released when you're physically active. It also showed an excellent performance to detect a hazardous gas like ammonia (NH3) with sensitivity as low as 5 ppm.

2020-12-14
Boualouache, A., Soua, R., Engel, T..  2020.  SDN-based Misbehavior Detection System for Vehicular Networks. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1–5.
Vehicular networks are vulnerable to a variety of internal attacks. Misbehavior Detection Systems (MDS) are preferred over the cryptography solutions to detect such attacks. However, the existing misbehavior detection systems are static and do not adapt to the context of vehicles. To this end, we exploit the Software-Defined Networking (SDN) paradigm to propose a context-aware MDS. Based on the context, our proposed system can tune security parameters to provide accurate detection with low false positives. Our system is Sybil attack-resistant and compliant with vehicular privacy standards. The simulation results show that, under different contexts, our system provides a high detection ratio and low false positives compared to a static MDS.
Efendioglu, H. S., Asik, U., Karadeniz, C..  2020.  Identification of Computer Displays Through Their Electromagnetic Emissions Using Support Vector Machines. 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). :1–5.
As a TEMPEST information security problem, electromagnetic emissions from the computer displays can be captured, and reconstructed using signal processing techniques. It is necessary to identify the display type to intercept the image of the display. To determine the display type not only significant for attackers but also for protectors to prevent display compromising emanations. This study relates to the identification of the display type using Support Vector Machines (SVM) from electromagnetic emissions emitted from computer displays. After measuring the emissions using receiver measurement system, the signals were processed and training/test data sets were formed and the classification performance of the displays was examined with the SVM. Moreover, solutions for a better classification under real conditions have been proposed. Thus, one of the important step of the display image capture can accomplished by automatically identification the display types. The performance of the proposed method was evaluated in terms of confusion matrix and accuracy, precision, F1-score, recall performance measures.
2020-12-07
Xu, M., Huber, M., Sun, Z., England, P., Peinado, M., Lee, S., Marochko, A., Mattoon, D., Spiger, R., Thom, S..  2019.  Dominance as a New Trusted Computing Primitive for the Internet of Things. 2019 IEEE Symposium on Security and Privacy (SP). :1415–1430.
The Internet of Things (IoT) is rapidly emerging as one of the dominant computing paradigms of this decade. Applications range from in-home entertainment to large-scale industrial deployments such as controlling assembly lines and monitoring traffic. While IoT devices are in many respects similar to traditional computers, user expectations and deployment scenarios as well as cost and hardware constraints are sufficiently different to create new security challenges as well as new opportunities. This is especially true for large-scale IoT deployments in which a central entity deploys and controls a large number of IoT devices with minimal human interaction. Like traditional computers, IoT devices are subject to attack and compromise. Large IoT deployments consisting of many nearly identical devices are especially attractive targets. At the same time, recovery from root compromise by conventional means becomes costly and slow, even more so if the devices are dispersed over a large geographical area. In the worst case, technicians have to travel to all devices and manually recover them. Data center solutions such as the Intelligent Platform Management Interface (IPMI) which rely on separate service processors and network connections are not only not supported by existing IoT hardware, but are unlikely to be in the foreseeable future due to the cost constraints of mainstream IoT devices. This paper presents CIDER, a system that can recover IoT devices within a short amount of time, even if attackers have taken root control of every device in a large deployment. The recovery requires minimal manual intervention. After the administrator has identified the compromise and produced an updated firmware image, he/she can instruct CIDER to force the devices to reset and to install the patched firmware on the devices. We demonstrate the universality and practicality of CIDER by implementing it on three popular IoT platforms (HummingBoard Edge, Raspberry Pi Compute Module 3 and Nucleo-L476RG) spanning the range from high to low end. Our evaluation shows that the performance overhead of CIDER is generally negligible.
2020-12-01
Herse, S., Vitale, J., Tonkin, M., Ebrahimian, D., Ojha, S., Johnston, B., Judge, W., Williams, M..  2018.  Do You Trust Me, Blindly? Factors Influencing Trust Towards a Robot Recommender System 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). :7—14.

When robots and human users collaborate, trust is essential for user acceptance and engagement. In this paper, we investigated two factors thought to influence user trust towards a robot: preference elicitation (a combination of user involvement and explanation) and embodiment. We set our experiment in the application domain of a restaurant recommender system, assessing trust via user decision making and perceived source credibility. Previous research in this area uses simulated environments and recommender systems that present the user with the best choice from a pool of options. This experiment builds on past work in two ways: first, we strengthened the ecological validity of our experimental paradigm by incorporating perceived risk during decision making; and second, we used a system that recommends a nonoptimal choice to the user. While no effect of embodiment is found for trust, the inclusion of preference elicitation features significantly increases user trust towards the robot recommender system. These findings have implications for marketing and health promotion in relation to Human-Robot Interaction and call for further investigation into the development and maintenance of trust between robot and user.