Visible to the public Biblio

Found 560 results

Filters: First Letter Of Last Name is I  [Clear All Filters]
2023-09-20
Abdullah, Muhammed Amin, Yu, Yongbin, Cai, Jingye, Imrana, Yakubu, Tettey, Nartey Obed, Addo, Daniel, Sarpong, Kwabena, Agbley, Bless Lord Y., Appiah, Benjamin.  2022.  Disparity Analysis Between the Assembly and Byte Malware Samples with Deep Autoencoders. 2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :1—4.
Malware attacks in the cyber world continue to increase despite the efforts of Malware analysts to combat this problem. Recently, Malware samples have been presented as binary sequences and assembly codes. However, most researchers focus only on the raw Malware sequence in their proposed solutions, ignoring that the assembly codes may contain important details that enable rapid Malware detection. In this work, we leveraged the capabilities of deep autoencoders to investigate the presence of feature disparities in the assembly and raw binary Malware samples. First, we treated the task as outliers to investigate whether the autoencoder would identify and justify features as samples from the same family. Second, we added noise to all samples and used Deep Autoencoder to reconstruct the original samples by denoising. Experiments with the Microsoft Malware dataset showed that the byte samples' features differed from the assembly code samples.
Ismael, Maher F., Thanoon, Karam H..  2022.  Investigation Malware Analysis Depend on Reverse Engineering Using IDAPro. 2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM). :227—231.
Any software that runs malicious payloads on victims’ computers is referred to as malware. It is an increasing threat that costs people, businesses, and organizations a lot of money. Attacks on security have developed significantly in recent years. Malware may infiltrate both offline and online media, like: chat, SMS, and spam (email, or social media), because it has a built-in defensive mechanism and may conceal itself from antivirus software or even corrupt it. As a result, there is an urgent need to detect and prevent malware before it damages critical assets around the world. In fact, there are lots of different techniques and tools used to combat versus malware. In this paper, the malware samples were analyzing in the Virtual Box environment using in-depth analysis based on reverse engineering using advanced static malware analysis techniques. The results Obtained from malware analysis which represent a set of valuable information, all anti-malware and anti-virus program companies need for in order to update their products.
2023-08-25
Riyanto, Supangkat, Suhono Harso, Iskandar.  2022.  Survey on MAC Protocol of Mobile Ad hoc Network for Tactical Data Link System. 2022 International Conference on Information Technology Systems and Innovation (ICITSI). :134–137.
Tactical Data Link (TDL) is one of the important elements in Network Centric Warfare (NCW). TDL provides the means for rapid exchange of tactical information between air, ground, sea units and command centers. In military operations, TDL has high demands for resilience, responsiveness, reliability, availability and security. MANET has characteristics that are suitable for the combat environment, namely the ability to self-form and self-healing so that this network may be applied to the TDL system. To produce high performance in MANET adapted for TDL system, an efficient MAC Protocol method is needed. This paper provides a survey of several MAC Protocol methods on a tactical MANET. In this paper also suggests some improvements to the MANET MAC protocol to improve TDL system performance.
2023-08-03
Ndichu, Samuel, Ban, Tao, Takahashi, Takeshi, Inoue, Daisuke.  2022.  Security-Alert Screening with Oversampling Based on Conditional Generative Adversarial Networks. 2022 17th Asia Joint Conference on Information Security (AsiaJCIS). :1–7.
Imbalanced class distribution can cause information loss and missed/false alarms for deep learning and machine-learning algorithms. The detection performance of traditional intrusion detection systems tend to degenerate due to skewed class distribution caused by the uneven allocation of observations in different kinds of attacks. To combat class imbalance and improve network intrusion detection performance, we adopt the conditional generative adversarial network (CTGAN) that enables the generation of samples of specific classes of interest. CTGAN builds on the generative adversarial networks (GAN) architecture to model tabular data and generate high quality synthetic data by conditionally sampling rows from the generated model. Oversampling using CTGAN adds instances to the minority class such that both data in the majority and the minority class are of equal distribution. The generated security alerts are used for training classifiers that realize critical alert detection. The proposed scheme is evaluated on a real-world dataset collected from security operation center of a large enterprise. The experiment results show that detection accuracy can be substantially improved when CTGAN is adopted to produce a balanced security-alert dataset. We believe the proposed CTGAN-based approach can cast new light on building effective systems for critical alert detection with reduced missed/false alarms.
ISSN: 2765-9712
2023-07-31
Islamy, Chaidir Chalaf, Ahmad, Tohari, Ijtihadie, Royyana Muslim.  2022.  Secret Image Sharing and Steganography based on Fuzzy Logic and Prediction Error. 2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT). :137—142.
Transmitting data through the internet may have severe security risks due to illegal access done by attackers. Some methods have been introduced to overcome this issue, such as cryptography and steganography. Nevertheless, some problems still arise, such as the quality of the stego data. Specifically, it happens if the stego is shared with some users. In this research, a shared-secret mechanism is combined with steganography. For this purpose, the fuzzy logic edge detection and Prediction Error (PE) methods are utilized to hide private data. The secret sharing process is carried out after data embedding in the cover image. This sharing mechanism is performed on image pixels that have been converted to PE values. Various Peak Signal to Noise Ratio (PSNR) values are obtained from the experiment. It is found that the number of participants and the threshold do not significantly affect the image quality of the shares.
2023-07-28
De La Croix, Ntivuguruzwa Jean, Islamy, Chaidir Chalaf, Ahmad, Tohari.  2022.  Secret Message Protection using Fuzzy Logic and Difference Expansion in Digital Images. 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON). :1—5.

Secrete message protection has become a focal point of the network security domain due to the problems of violating the network use policies and unauthorized access of the public network. These problems have led to data protection techniques such as cryptography, and steganography. Cryptography consists of encrypting secrete message to a ciphertext format and steganography consists of concealing the secrete message in codes that make up a digital file, such as an image, audio, and video. Steganography, which is different from cryptography, ensures hiding a secret message for secure transmission over the public network. This paper presents a steganographic approach using digital images for data hiding that aims to providing higher performance by combining fuzzy logic type I to pre-process the cover image and difference expansion techniques. The previous methods have used the original cover image to embed the secrete message. This paper provides a new method that first identifies the edges of a cover image and then proceeds with a difference expansion to embed the secrete message. The experimental results of this work identified an improvement of 10% of the existing method based on increased payload capacity and the visibility of the stego image.

2023-07-21
Sadikoğlu, Fahreddin M., Idle Mohamed, Mohamed.  2022.  Facial Expression Recognition Using CNN. 2022 International Conference on Artificial Intelligence in Everything (AIE). :95—99.
Facial is the most dynamic part of the human body that conveys information about emotions. The level of diversity in facial geometry and facial look makes it possible to detect various human expressions. To be able to differentiate among numerous facial expressions of emotion, it is crucial to identify the classes of facial expressions. The methodology used in this article is based on convolutional neural networks (CNN). In this paper Deep Learning CNN is used to examine Alex net architectures. Improvements were achieved by applying the transfer learning approach and modifying the fully connected layer with the Support Vector Machine(SVM) classifier. The system succeeded by achieving satisfactory results on icv-the MEFED dataset. Improved models achieved around 64.29 %of recognition rates for the classification of the selected expressions. The results obtained are acceptable and comparable to the relevant systems in the literature provide ideas a background for further improvements.
2023-07-19
Vekić, Marko, Isakov, Ivana, Rapaić, Milan, Grabić, Stevan, Todorović, Ivan, Porobić, Vlado.  2022.  Decentralized microgrid control "beyond droop". 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1—5.
Various approaches of microgrid operation have been proposed, albeit with noticeable issues such as power-sharing, control of frequency and voltage excursions, applicability on different grids, etc. This paper proposes a goal function-based, decentralized control that addresses the mentioned problems and secures the microgrid stability by constraining the frequency and node deviations across the grid while simultaneously supporting the desired active power exchange between prosumer nodes. The control algorithm is independent of network topology and enables arbitrary node connection, i.e. seamless microgrid expandability. To confirm the effectiveness of the proposed control strategy, simulation results are presented and discussed.
2023-07-18
Ikesaka, Kazuma, Nanjo, Yuki, Kodera, Yuta, Kusaka, Takuya, Nogami, Yasuyuki.  2022.  Improvement of Miller Loop for a Pairing on FK12 Curve and its Implementation. 2022 Tenth International Symposium on Computing and Networking (CANDAR). :104—109.
Pairing is carried out by two steps, Miller loop and final exponentiation. In this manuscript, the authors propose an efficient Miller loop for a pairing on the FK12 curve. A Hamming weight and bit-length of loop parameter have a great effect on the computational cost of Miller loop. Optimal-ate pairing is used as the most efficient pairing on the FK12 curve currently. The loop parameter of optimal-ate pairing is 6z+2 where z is the integer to make the FK12 curve parameter. Our method uses z which has a shorter bit-length than the previous optimal-ate pairing as the loop parameter. Usually, z has a low Hamming weight to make final exponentiation efficient. Therefore, the loop parameter in our method has a lower Hamming weight than the loop parameter of the previous one in many cases. The authors evaluate our method by the number of multiplications and execution time. As a result, the proposed algorithm leads to the 3.71% reduction in the number of multiplications and the 3.38% reduction in the execution time.
Ikesaka, Kazuma, Nanjo, Yuki, Kodera, Yuta, Kusaka, Takuya, Nogami, Yasuyuki.  2022.  Improvement of Final Exponentiation for a Pairing on FK12 Curve and its Implementation. 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :205—208.
Pairings on elliptic curves are used for innovative protocols such as ID-based encryption and zk-SNARKs. To make the pairings secure, it is important to consider the STNFS which is the special number field sieve algorithm for discrete logarithms in the finite field. The Fotiadis-Konstantinou curve with embedding degree 12(FK12), is known as one of the STNFS secure curves. To an efficient pairing on the FK12 curve, there are several previous works that focus on final exponentiation. The one is based on lattice-based method to decompose the hard part of final exponentiation and addition chain. However, there is a possibility to construct a more efficient calculation algorithm by using the relations appeared in the decomposition calculation algorithm than that of the previous work. In this manuscript, the authors propose a relation of the decomposition and verify the effectiveness of the proposed method from the execution time.
2023-07-12
Ravi, Renjith V., Goyal, S. B., Islam, Sardar M N.  2022.  Colour Image Encryption Using Chaotic Trigonometric Map and DNA Coding. 2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO). :172—176.
The problem of information privacy has grown more significant in terms of data storage and communication in the 21st century due to the technological explosion during which information has become a highly important strategic resource. The idea of employing DNA cryptography has been highlighted as a potential technology that offers fresh hope for unbreakable algorithms since standard cryptosystems are becoming susceptible to assaults. Due to biological DNA's outstanding energy efficiency, enormous storage capacity, and extensive parallelism, a new branch of cryptography based on DNA computing is developing. There is still more study to be done since this discipline is still in its infancy. This work proposes a DNA encryption strategy based on cryptographic key generation techniques and chaotic diffusion operation.
2023-06-30
Mimoto, Tomoaki, Hashimoto, Masayuki, Yokoyama, Hiroyuki, Nakamura, Toru, Isohara, Takamasa, Kojima, Ryosuke, Hasegawa, Aki, Okuno, Yasushi.  2022.  Differential Privacy under Incalculable Sensitivity. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :27–31.
Differential privacy mechanisms have been proposed to guarantee the privacy of individuals in various types of statistical information. When constructing a probabilistic mechanism to satisfy differential privacy, it is necessary to consider the impact of an arbitrary record on its statistics, i.e., sensitivity, but there are situations where sensitivity is difficult to derive. In this paper, we first summarize the situations in which it is difficult to derive sensitivity in general, and then propose a definition equivalent to the conventional definition of differential privacy to deal with them. This definition considers neighboring datasets as in the conventional definition. Therefore, known differential privacy mechanisms can be applied. Next, as an example of the difficulty in deriving sensitivity, we focus on the t-test, a basic tool in statistical analysis, and show that a concrete differential privacy mechanism can be constructed in practice. Our proposed definition can be treated in the same way as the conventional differential privacy definition, and can be applied to cases where it is difficult to derive sensitivity.
2023-06-29
Widiyanto, Wahyu Wijaya, Iskandar, Dwi, Wulandari, Sri, Susena, Edy, Susanto, Edy.  2022.  Implementation Security Digital Signature Using Rivest Shamir Adleman (RSA) Algorithm As A Letter Validation And Distribution Validation System. 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC). :599–605.
A digital signature is a type of asymmetric cryptography that is used to ensure that the recipient receives the actual received message from the intended sender. Problems that often arise conventionally when requiring letter approval from the authorized official, and the letter concerned is very important and urgent, often the process of giving the signature is hampered because the official concerned is not in place. With these obstacles, the letter that should be distributed immediately becomes hampered and takes a long time in terms of signing the letter. The purpose of this study is to overcome eavesdropping and data exchange in sending data using Digital Signature as authentication of data authenticity and minimizing fake signatures on letters that are not made and authorized by relevant officials based on digital signatures stored in the database. This research implements the Rivest Shamir Adleman method. (RSA) as outlined in an application to provide authorization or online signature with Digital Signature. The results of the study The application of the Rivest Shamir Adleman (RSA) algorithm can run on applications with the Digital Signature method based on ISO 9126 testing by expert examiners, and the questionnaire distributed to users and application operators obtained good results from an average value of 79.81 based on the scale table ISO 9126 conversion, the next recommendation for encryption does not use MD5 but uses Bcrypt secure database to make it stronger.
2023-06-22
Ho, Samson, Reddy, Achyut, Venkatesan, Sridhar, Izmailov, Rauf, Chadha, Ritu, Oprea, Alina.  2022.  Data Sanitization Approach to Mitigate Clean-Label Attacks Against Malware Detection Systems. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :993–998.
Machine learning (ML) models are increasingly being used in the development of Malware Detection Systems. Existing research in this area primarily focuses on developing new architectures and feature representation techniques to improve the accuracy of the model. However, recent studies have shown that existing state-of-the art techniques are vulnerable to adversarial machine learning (AML) attacks. Among those, data poisoning attacks have been identified as a top concern for ML practitioners. A recent study on clean-label poisoning attacks in which an adversary intentionally crafts training samples in order for the model to learn a backdoor watermark was shown to degrade the performance of state-of-the-art classifiers. Defenses against such poisoning attacks have been largely under-explored. We investigate a recently proposed clean-label poisoning attack and leverage an ensemble-based Nested Training technique to remove most of the poisoned samples from a poisoned training dataset. Our technique leverages the relatively large sensitivity of poisoned samples to feature noise that disproportionately affects the accuracy of a backdoored model. In particular, we show that for two state-of-the art architectures trained on the EMBER dataset affected by the clean-label attack, the Nested Training approach improves the accuracy of backdoor malware samples from 3.42% to 93.2%. We also show that samples produced by the clean-label attack often successfully evade malware classification even when the classifier is not poisoned during training. However, even in such scenarios, our Nested Training technique can mitigate the effect of such clean-label-based evasion attacks by recovering the model's accuracy of malware detection from 3.57% to 93.2%.
ISSN: 2155-7586
2023-05-30
Shawky, Mahmoud A., Abbasi, Qammer H., Imran, Muhammad Ali, Ansari, Shuja, Taha, Ahmad.  2022.  Cross-Layer Authentication based on Physical-Layer Signatures for Secure Vehicular Communication. 2022 IEEE Intelligent Vehicles Symposium (IV). :1315—1320.
In recent years, research has focused on exploiting the inherent physical (PHY) characteristics of wireless channels to discriminate between different spatially separated network terminals, mitigating the significant costs of signature-based techniques. In this paper, the legitimacy of the corresponding terminal is firstly verified at the protocol stack’s upper layers, and then the re-authentication process is performed at the PHY-layer. In the latter, a unique PHY-layer signature is created for each transmission based on the spatially and temporally correlated channel attributes within the coherence time interval. As part of the verification process, the PHY-layer signature can be used as a message authentication code to prove the packet’s authenticity. Extensive simulation has shown the capability of the proposed scheme to support high detection probability at small signal-to-noise ratios. In addition, security evaluation is conducted against passive and active attacks. Computation and communication comparisons are performed to demonstrate that the proposed scheme provides superior performance compared to conventional cryptographic approaches.
2023-05-19
Kraft, Oliver, Pohl, Oliver, Häger, Ulf, Heussen, Kai, Müller, Nils, Afzal, Zeeshan, Ekstedt, Mathias, Farahmand, Hossein, Ivanko, Dmytro, Singh, Ankit et al..  2022.  Development and Implementation of a Holistic Flexibility Market Architecture. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.
The demand for increasing flexibility use in power systems is stressed by the changing grid utilization. Making use of largely untapped flexibility potential is possible through novel flexibility markets. Different approaches for these markets are being developed and vary considering their handling of transaction schemes and relation of participating entities. This paper delivers the conceptual development of a holistic system architecture for the realization of an interregional flexibility market, which targets a market based congestion management in the transmission and distribution system through trading between system operators and flexibility providers. The framework combines a market mechanism with the required supplements like appropriate control algorithms for emergency situations, cyber-physical system monitoring and cyber-security assessment. The resulting methods are being implemented and verified in a remote-power-hardware-in-the-loop setup coupling a real world low voltage grid with a geographically distant real time simulation using state of the art control system applications with an integration of the aforementioned architecture components.
Iv, James K. Howes, Georgiou, Marios, Malozemoff, Alex J., Shrimpton, Thomas.  2022.  Security Foundations for Application-Based Covert Communication Channels. 2022 IEEE Symposium on Security and Privacy (SP). :1971—1986.
We introduce the notion of an application-based covert channel—or ABCC—which provides a formal syntax for describing covert channels that tunnel messages through existing protocols. Our syntax captures many recent systems, including DeltaShaper (PETS 2017) and Protozoa (CCS 2020). We also define what it means for an ABCC to be secure against a passive eavesdropper, and prove that suitable abstractions of existing censorship circumvention systems satisfy our security notion. In doing so, we define a number of important non-cryptographic security assumptions that are often made implicitly in prior work. We believe our formalisms may be useful to censorship circumvention developers for reasoning about the security of their systems and the associated security assumptions required.
2023-04-28
Dutta, Ashutosh, Hammad, Eman, Enright, Michael, Behmann, Fawzi, Chorti, Arsenia, Cheema, Ahmad, Kadio, Kassi, Urbina-Pineda, Julia, Alam, Khaled, Limam, Ahmed et al..  2022.  Security and Privacy. 2022 IEEE Future Networks World Forum (FNWF). :1–71.
The digital transformation brought on by 5G is redefining current models of end-to-end (E2E) connectivity and service reliability to include security-by-design principles necessary to enable 5G to achieve its promise. 5G trustworthiness highlights the importance of embedding security capabilities from the very beginning while the 5G architecture is being defined and standardized. Security requirements need to overlay and permeate through the different layers of 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture within a risk-management framework that takes into account the evolving security-threats landscape. 5G presents a typical use-case of wireless communication and computer networking convergence, where 5G fundamental building blocks include components such as Software Defined Networks (SDN), Network Functions Virtualization (NFV) and the edge cloud. This convergence extends many of the security challenges and opportunities applicable to SDN/NFV and cloud to 5G networks. Thus, 5G security needs to consider additional security requirements (compared to previous generations) such as SDN controller security, hypervisor security, orchestrator security, cloud security, edge security, etc. At the same time, 5G networks offer security improvement opportunities that should be considered. Here, 5G architectural flexibility, programmability and complexity can be harnessed to improve resilience and reliability. The working group scope fundamentally addresses the following: •5G security considerations need to overlay and permeate through the different layers of the 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture including a risk management framework that takes into account the evolving security threats landscape. •5G exemplifies a use-case of heterogeneous access and computer networking convergence, which extends a unique set of security challenges and opportunities (e.g., related to SDN/NFV and edge cloud, etc.) to 5G networks. Similarly, 5G networks by design offer potential security benefits and opportunities through harnessing the architecture flexibility, programmability and complexity to improve its resilience and reliability. •The IEEE FNI security WG's roadmap framework follows a taxonomic structure, differentiating the 5G functional pillars and corresponding cybersecurity risks. As part of cross collaboration, the security working group will also look into the security issues associated with other roadmap working groups within the IEEE Future Network Initiative.
ISSN: 2770-7679
Iqbal, Sarfraz.  2022.  Analyzing Initial Design Theory Components for Developing Information Security Laboratories. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :36–40.
Online information security labs intended for training and facilitating hands-on learning for distance students at master’s level are not easy to develop and administer. This research focuses on analyzing the results of a DSR project for design, development, and implementation of an InfoSec lab. This research work contributes to the existing research by putting forth an initial outline of a generalized model for design theory for InfoSec labs aimed at hands-on education of students in the field of information security. The anatomy of design theory framework is used to analyze the necessary components of the anticipated design theory for InfoSec labs in future.
Ghazal, Taher M., Hasan, Mohammad Kamrul, Zitar, Raed Abu, Al-Dmour, Nidal A., Al-Sit, Waleed T., Islam, Shayla.  2022.  Cybers Security Analysis and Measurement Tools Using Machine Learning Approach. 2022 1st International Conference on AI in Cybersecurity (ICAIC). :1–4.
Artificial intelligence (AI) and machine learning (ML) have been used in transforming our environment and the way people think, behave, and make decisions during the last few decades [1]. In the last two decades everyone connected to the Internet either an enterprise or individuals has become concerned about the security of his/their computational resources. Cybersecurity is responsible for protecting hardware and software resources from cyber attacks e.g. viruses, malware, intrusion, eavesdropping. Cyber attacks either come from black hackers or cyber warfare units. Artificial intelligence (AI) and machine learning (ML) have played an important role in developing efficient cyber security tools. This paper presents Latest Cyber Security Tools Based on Machine Learning which are: Windows defender ATP, DarckTrace, Cisco Network Analytic, IBM QRader, StringSifter, Sophos intercept X, SIME, NPL, and Symantec Targeted Attack Analytic.
2023-03-31
Islam, Raisa, Hossen, Mohammad Sahinur, Shin, Dongwan.  2022.  A Mapping Study on Privacy Attacks in Big Data and IoT. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :1158–1163.
Application domains like big data and IoT require a lot of user data collected and analyzed to extract useful information, and those data might include user's sensitive and personal information. Hence, it is strongly required to ensure the privacy of user data before releasing them in the public space. Since the fields of IoT and big data are constantly evolving with new types of privacy attacks and prevention mechanisms, there is an urgent need for new research and surveys to develop an overview of the state-of-art. We conducted a systematic mapping study on selected papers related to user privacy in IoT and big data, published between 2010 to 2021. This study focuses on identifying the main privacy objectives, attacks and measures taken to prevent the attacks in the two application domains. Additionally, a visualized classification of the existing attacks is presented along with privacy metrics to draw similarities and dissimilarities among different attacks.
ISSN: 2162-1241
Shahid, Jahanzeb, Muhammad, Zia, Iqbal, Zafar, Khan, Muhammad Sohaib, Amer, Yousef, Si, Weisheng.  2022.  SAT: Integrated Multi-agent Blackbox Security Assessment Tool using Machine Learning. 2022 2nd International Conference on Artificial Intelligence (ICAI). :105–111.
The widespread adoption of eCommerce, iBanking, and eGovernment institutions has resulted in an exponential rise in the use of web applications. Due to a large number of users, web applications have become a prime target of cybercriminals who want to steal Personally Identifiable Information (PII) and disrupt business activities. Hence, there is a dire need to audit the websites and ensure information security. In this regard, several web vulnerability scanners are employed for vulnerability assessment of web applications but attacks are still increasing day by day. Therefore, a considerable amount of research has been carried out to measure the effectiveness and limitations of the publicly available web scanners. It is identified that most of the publicly available scanners possess weaknesses and do not generate desired results. In this paper, the evaluation of publicly available web vulnerability scanners is performed against the top ten OWASP11OWASP® The Open Web Application Security Project (OWASP) is an online community that produces comprehensive articles, documentation, methodologies, and tools in the arena of web and mobile security. vulnerabilities and their performance is measured on the precision of their results. Based on these results, we proposed an Integrated Multi-Agent Blackbox Security Assessment Tool (SAT) for the security assessment of web applications. Research has proved that the vulnerabilities assessment results of the SAT are more extensive and accurate.
2023-03-17
Al-Aziz, Faiq Najib, Mayasari, Ratna, Sartika, Nike, Irawan, Arif Indra.  2022.  Strategy to Increase RFID Security System Using Encryption Algorithm. 2022 8th International Conference on Wireless and Telematics (ICWT). :1–6.
The Internet of Things (IoT) is rapidly evolving, allowing physical items to share information and coordinate with other nodes, increasing IoT’s value and being widely applied to various applications. Radio Frequency Identification (RFID) is usually used in IoT applications to automate item identification by establishing symmetrical communication between the tag device and the reader. Because RFID reading data is typically in plain text, a security mechanism is required to ensure that the reading results from this RFID data remain confidential. Researchers propose a lightweight encryption algorithm framework for IoT-based RFID applications to address this security issue. Furthermore, this research assesses the implementation of lightweight encryption algorithms, such as Grain v1 and Espresso, as two systems scenarios. The Grain v1 encryption is the final eSTREAM project that accepts an 80-bit key, 64-bit IV, and has a 160-bit internal state with limited application. In contrast, the Espresso algorithm has been implemented in various applications such as 5G wireless communication. Furthermore, this paper tested the performance of each encryption algorithm in the microcontroller and inspected the network performance in an IoT system.
Mohammadi, Ali, Badewa, Oluwaseun A., Chulaee, Yaser, Ionel, Dan M., Essakiappan, Somasundaram, Manjrekar, Madhav.  2022.  Direct-Drive Wind Generator Concept with Non-Rare-Earth PM Flux Intensifying Stator and Reluctance Outer Rotor. 2022 11th International Conference on Renewable Energy Research and Application (ICRERA). :582–587.
This paper proposes a novel concept for an electric generator in which both ac windings and permanent magnets (PMs) are placed in the stator. Concentrated windings with a special pattern and phase coils placed in separate slots are employed. The PMs are positioned in a spoke-type field concentrating arrangement, which provides high flux intensification and enables the use of lower remanence and energy non-rare earth magnets. The rotor is exterior to the stator and has a simple and robust reluctance-type configuration without any active electromagnetic excitation components. The principle of operation is introduced based on the concept of virtual work with closed-form analytical airgap flux density distributions. Initial and parametric design studies were performed using electromagnetic FEA for a 3MW direct-drive wind turbine generator employing PMs of different magnetic remanence and specific energy. Results include indices for the goodness of excitation and the goodness of the electric machine designs; loss; and efficiency estimations, indicating that performance comparable to PM synchronous designs employing expensive and critical supply rare-earth PMs may be achieved with non-rare earth PMs using the proposed configuration.
ISSN: 2572-6013
Al-Zahrani, Basmah, Alshehri, Suhair, Cherif, Asma, Imine, Abdessamad.  2022.  Property Graph Access Control Using View-Based and Query-Rewriting Approaches. 2022 IEEE/ACS 19th International Conference on Computer Systems and Applications (AICCSA). :1–2.
Managing and storing big data is non-trivial for traditional relational databases (RDBMS). Therefore, the NoSQL (Not Only SQL) database management system emerged. It is ca-pable of handling the vast amount and the heterogeneity of data. In this research, we are interested in one of its trending types, the graph database, namely, the Directed Property Graph (DPG). This type of database is powerful in dealing with complex relationships (\$\textbackslashmathrme.\textbackslashmathrmg\$., social networks). However, its sen-sitive and private data must be protected against unauthorized access. This research proposes a security model that aims at exploiting and combining the benefits of Access Control, View-Based, and Query-Rewriting approaches. This is a novel combination for securing DPG.
ISSN: 2161-5330