Biblio
Fog Computing was envisioned to solve problems like high latency, mobility, bandwidth, etc. that were introduced by Cloud Computing. Fog Computing has enabled remotely connected IoT devices and sensors to be managed efficiently. Nonetheless, the Fog-Cloud paradigm suffers from various security and privacy related problems. Blockchain ensures security in a trustless way and therefore its applications in various fields are increasing rapidly. In this work, we propose a Fog-Cloud architecture that enables Blockchain to ensure security, scalability, and privacy of remotely connected IoT devices. Furthermore, our proposed architecture also efficiently manages common problems like ever-increasing latency and energy consumption that comes with the integration of Blockchain in Fog-Cloud architecture.
Controller Area Network is the bus standard that works as a central system inside the vehicles for communicating in-vehicle messages. Despite having many advantages, attackers may hack into a car system through CAN bus, take control of it and cause serious damage. For, CAN bus lacks security services like authentication, encryption etc. Therefore, an anomaly detection system must be integrated with CAN bus in vehicles. In this paper, we proposed an Artificial Neural Network based anomaly detection method to identify illicit messages in CAN bus. We trained our model with two types of attacks so that it can efficiently identify the attacks. When tested, the proposed algorithm showed high performance in detecting Denial of Service attacks (with accuracy 100%) and Fuzzy attacks (with accuracy 99.98%).