Biblio
The world is witnessing the emerging role of Internet of Things (IoT) as a technology that is transforming different industries, global community and its economy. Currently a plethora of interconnected smart devices have been deployed for diverse pervasive applications and services, and billions more are expected to be connected to the Internet in the near future. The potential benefits of IoT include improved quality of life, convenience, enhanced energy efficiency, and more productivity. Alongside these potential benefits, however, come increased security risks and potential for abuse. Arguably, this is partly because many IoT start-ups and electronics hobbyists lack security expertise, and some established companies do not make security a priority in their designs, and hence they produce IoT devices that are often ill-equipped in terms of security. In this paper, we discuss different IoT application areas, and identify security threats in IoT architecture. We consider security requirements and present typical security threats for each of the application domains. Finally, we present several possible security countermeasures, and introduce the IoT Hardware Platform Security Advisor (IoT-HarPSecA) framework, which is still under development. IoT-HarPSecA is aimed at facilitating the design and prototyping of secure IoT devices.
The method of choice the control parameters of a complex system based on estimates of the risks is proposed. The procedure of calculating the estimates of risks intended for a choice of rational managing directors of influences by an allocation of the group of the operating factors for the set criteria factor is considered. The purpose of choice of control parameters of the complex system is the minimization of an estimate of the risk of the functioning of the system by mean of a solution of a problem of search of an extremum of the function of many variables. The example of a choice of the operating factors in the sphere of intangible assets is given.
The Security is a real permanent problem in wired and wireless communication systems. This issue becomes more and more complex in the internet of things context where the security solution still poor and insufficient where the number of these noeud hugely increase (around 26 milliards in 2020). In this paper we propose a new security schema which avoid the use of cryptography mechanism based on the exchange of symmetric or asymmetric keys which aren't recommended in IoT devices due to their limitation in processing, stockage and energy. The proposed solution is based on the use of the multi-agent ensuring the security of connected objects. These objects programmed with agents are able to communicate with other objects without any need to compute keys. The main objective in this work is to maintain a high level of security with an optimization of the energy consumption of IoT devices.
In a scenario where user files are stored in a network shared volume, a single computer infected by ransomware could encrypt the whole set of shared files, with a large impact on user productivity. On the other hand, medium and large companies maintain hardware or software probes that monitor the traffic in critical network links, in order to evaluate service performance, detect security breaches, account for network or service usage, etc. In this paper we suggest using the monitoring capabilities in one of these tools in order to keep a trace of the traffic between the users and the file server. Once the ransomware is detected, the lost files can be recovered from the traffic trace. This includes any user modifications posterior to the last snapshot of periodic backups. The paper explains the problems faced by the monitoring tool, which is neither the client nor the server of the file sharing operations. It also describes the data structures in order to process the actions of users that could be simultaneously working on the same file. A proof of concept software implementation was capable of successfully recovering the files encrypted by 18 different ransomware families.
Converged Multi-Level Secure systems allow users to interact with and freely move between applications and data of varying sensitivity on a single user interface. They promise unprecedented usability and security, especially in security-critical environments like Defence. Yet these promises rely on hard assumptions about secure user behaviour. We present initial work to test the validity of these assumptions in the absence of deception by an adversary. We conducted a user study with 21 participants on the Cross Domain Desktop Compositor. Chief amongst our findings is that the vast majority of participants (19 of 21) behave securely, even when doing so requires more effort than to behave insecurely. Our findings suggest that there is large scope for further research on converged Multi-Level Secure systems, and highlight the value of user studies to complement formal security analyses of critical systems.
Modern cyber-physical systems are complex networked computing systems that electronically control physical systems. Autonomous road vehicles are an important and increasingly ubiquitous instance. Unfortunately, their increasing complexity often leads to security vulnerabilities. Network connectivity exposes these vulnerable systems to remote software attacks that can result in real-world physical damage, including vehicle crashes and loss of control authority. We introduce an integrated architecture to provide provable security and safety assurance for cyber-physical systems by ensuring that safety-critical operations and control cannot be unintentionally affected by potentially malicious parts of the system. Fine-grained information flow control is used to design both hardware and software, determining how low-integrity information can affect high-integrity control decisions. This security assurance is used to improve end-to-end security across the entire cyber-physical system. We demonstrate this integrated approach by developing a mobile robotic testbed modeling a self-driving system and testing it with a malicious attack.
Trustworthiness is a paramount concern for users and customers in the selection of a software solution, specially in the context of complex and dynamic environments, such as Cloud and IoT. However, assessing and benchmarking trustworthiness (worthiness of software for being trusted) is a challenging task, mainly due to the variety of application scenarios (e.g., businesscritical, safety-critical), the large number of determinative quality attributes (e.g., security, performance), and last, but foremost, due to the subjective notion of trust and trustworthiness. In this paper, we present trustworthiness as a measurable notion in relative terms based on security attributes and propose an approach for the assessment and benchmarking of software. The main goal is to build a trustworthiness assessment model based on software metrics (e.g., Cyclomatic Complexity, CountLine, CBO) that can be used as indicators of software security. To demonstrate the proposed approach, we assessed and ranked several files and functions of the Mozilla Firefox project based on their trustworthiness score and conducted a survey among several software security experts in order to validate the obtained rank. Results show that our approach is able to provide a sound ranking of the benchmarked software.
Malware detection is an indispensable factor in security of internet oriented machines. The combinations of different features are used for dynamic malware analysis. The different combinations are generated from APIs, Summary Information, DLLs and Registry Keys Changed. Cuckoo sandbox is used for dynamic malware analysis, which is customizable, and provide good accuracy. More than 2300 features are extracted from dynamic analysis of malware and 92 features are extracted statically from binary malware using PEFILE. Static features are extracted from 39000 malicious binaries and 10000 benign files. Dynamically 800 benign files and 2200 malware files are analyzed in Cuckoo Sandbox and 2300 features are extracted. The accuracy of dynamic malware analysis is 94.64% while static analysis accuracy is 99.36%. The dynamic malware analysis is not effective due to tricky and intelligent behaviours of malwares. The dynamic analysis has some limitations due to controlled network behavior and it cannot be analyzed completely due to limited access of network.
In this paper, we propose a deep learning framework for malware classification. There has been a huge increase in the volume of malware in recent years which poses a serious security threat to financial institutions, businesses and individuals. In order to combat the proliferation of malware, new strategies are essential to quickly identify and classify malware samples so that their behavior can be analyzed. Machine learning approaches are becoming popular for classifying malware, however, most of the existing machine learning methods for malware classification use shallow learning algorithms (e.g. SVM). Recently, Convolutional Neural Networks (CNN), a deep learning approach, have shown superior performance compared to traditional learning algorithms, especially in tasks such as image classification. Motivated by this success, we propose a CNN-based architecture to classify malware samples. We convert malware binaries to grayscale images and subsequently train a CNN for classification. Experiments on two challenging malware classification datasets, Malimg and Microsoft malware, demonstrate that our method achieves better than the state-of-the-art performance. The proposed method achieves 98.52% and 99.97% accuracy on the Malimg and Microsoft datasets respectively.
Cloud Computing is an important term of modern technology. The usefulness of Cloud is increasing day by day and simultaneously more and more security problems are arising as well. Two of the major threats of Cloud are improper authentication and multi-tenancy. According to the specialists both pros and cons belong to multi-tenancy. There are security protocols available but it is difficult to claim these protocols are perfect and ensure complete protection. The purpose of this paper is to propose an integrated model to ensure better Cloud security for Authentication and multi-tenancy. Multi-tenancy means sharing of resources and virtualization among clients. Since multi-tenancy allows multiple users to access same resources simultaneously, there is high probability of accessing confidential data without proper privileges. Our model includes Kerberos authentication protocol to enhance authentication security. During our research on Kerberos we have found some flaws in terms of encryption method which have been mentioned in couple of IEEE conference papers. Pondering about this complication we have elected Elliptic Curve Cryptography. On the other hand, to attenuate arose risks due to multi-tenancy we are proposing a Resource Allocation Manager Unit, a Control Database and Resource Allocation Map. This part of the model will perpetuate resource allocation for the users.
The Internet of Things (IoT) is one of the emerging technologies that has seized the attention of researchers, the reason behind that was the IoT expected to be applied in our daily life in the near future and human will be wholly dependent on this technology for comfort and easy life style. Internet of things is the interconnection of internet enabled things or devices to connect with each other and to humans in order to achieve some goals or the ability of everyday objects to connect to the Internet and to send and receive data. However, the Internet of Things (IoT) raises significant challenges that could stand in the way of realizing its potential benefits. This paper discusses access control area as one of the most crucial aspect of security and privacy in IoT and proposing a new way of access control that would decide who is allowed to access what and who is not to the IoT subjects and sensors.
The paper is devoted to analysis of condition of executing devices and sensors of Industrial Control Systems information security. The work contains structures of industrial control systems divided into groups depending on system's layer. The article contains the analysis of analog interfaces work and work features of data transmission protocols in industrial control system field layer. Questions about relevance of industrial control systems information security, both from the point of view of the information security occurring incidents, and from the point of view of regulators' reaction in the form of normative legal acts, are described. During the analysis of the information security systems of industrial control systems a possibility of leakage through technical channels of information leakage at the field layer was found. Potential vectors of the attacks on devices of field layer and data transmission network of an industrial control system are outlined in the article. The relevance analysis of the threats connected with the attacks at the field layer of an industrial control system is carried out, feature of this layer and attractiveness of this kind of attacks is observed.
Most forensic investigators are trained to recognize abusive network behavior in conventional information systems, but they may not know how to detect anomalous traffic patterns in industrial control systems (ICS) that manage critical infrastructure services. We have developed and laboratory-tested hands-on teaching material to introduce students to forensics investigation of intrusions on an industrial network. Rather than using prototypes of ICS components, our approach utilizes commercial industrial products to provide students a more realistic simulation of an ICS network. The lessons cover four different types of attacks and the corresponding post-incident network data analysis.
Services provided online are subject to various types of attacks. Security appliances can be chained to protect a system against multiple types of network attacks. The sequence of appliances has a significant impact on the efficiency of the whole chain. While the operation of security appliance chains is currently based on a static order, traffic-aware reordering of security appliances may significantly improve efficiency and accuracy. In this paper, we present the vision of a self-aware system to automatically reorder security appliances according to incoming traffic. To achieve this, we propose to apply a model-based learning, reasoning, and acting (LRA-M) loop. To this end, we describe a corresponding system architecture and explain its building blocks.
Maritime transportation plays a critical role for the U.S. and global economies, and has evolved into a complex system that involves a plethora of supply chain stakeholders spread around the globe. The inherent complexity brings huge security challenges including cargo loss and high burdens in cargo inspection against illicit activities and potential terrorist attacks. The emerging blockchain technology provides a promising tool to build a unified maritime cargo tracking system critical for cargo security. However, most existing efforts focus on transportation data itself, while ignoring how to bind the physical cargo movements and information managed by the system consistently. This can severely undermine the effectiveness of securing cargo transportation. To fulfill this gap, we propose a binding scheme leveraging a novel digital identity management mechanism. The digital identity management mechanism maps the best practice in the physical world to the cyber world and can be seamlessly integrated with a blockchain-based cargo management system.
Data security in smart metering applications is important not only to secure the customer privacy but also to protect the power utility against fraud attempts. Usual deployment of metering applications rely on the power utility infrastructure, assuming its Advanced Metering Infrastructure (AMI) as trustworthy. This paper describes the design and deployment of a smart metering system focusing on the security of the AMI (smart meters, data aggregator on the field, Metering Data Collection system and metering database) considering the data processing on untrusted clouds. We discuss one use case of the SecureCloud project, an ongoing project that investigates how security and privacy requirements of smart grid applications can be met with a secure cloud platform based on Intel SGX enclaves. The paper describes the components of the advanced metering system as well as the security approach adopted to meet its requirements. A smart metering application has been prototyped in the SecureCloud platform and the integration challenges are discussed from the perspectives of security, privacy and scalability.