Visible to the public Biblio

Found 560 results

Filters: First Letter Of Last Name is I  [Clear All Filters]
2020-02-10
Fujita, Yuki, Inomata, Atsuo, Kashiwazaki, Hiroki.  2019.  Implementation and Evaluation of a Multi-Factor Web Authentication System with Individual Number Card and WebUSB. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
As the number of Internet users increases, their usage also diversifies, and it is important to prevent Identity on the Internet (Digital Identity) from being violated. Unauthorized authentication is one of the methods to infringe Digital Identity. Multi-factor authentication has been proposed as a method for preventing unauthorized authentication. However, the cryptographic authenticator required for multi-factor authentication is expensive both financially and UX-wise for the user. In this paper, we design, implement and evaluate multi-factor authentication using My Number Card provided by public personal identification service and WebUSB, which is being standardized.
Iftikhar, Jawad, Hussain, Sajid, Mansoor, Khwaja, Ali, Zeeshan, Chaudhry, Shehzad Ashraf.  2019.  Symmetric-Key Multi-Factor Biometric Authentication Scheme. 2019 2nd International Conference on Communication, Computing and Digital systems (C-CODE). :288–292.
Authentication is achieved by using different techniques, like using smart-card, identity password and biometric techniques. Some of the proposed schemes use a single factor for authentication while others combine multiple ways to provide multi-factor authentication for better security. lately, a new scheme for multi-factor authentication was presented by Cao and Ge and claimed that their scheme is highly secure and can withstand against all known attacks. In this paper, it is revealed that their scheme is still vulnerable and have some loopholes in term of reflection attack. Therefore, an improved scheme is proposed to overcome the security weaknesses of Cao and Ge's scheme. The proposed scheme resists security attacks and secure. Formal testing is carried out under a broadly-accepted simulated tool ProVerif which demonstrates that the proposed scheme is well secure.
Ishtiaq, Asra, Islam, Muhammad Arshad, Azhar Iqbal, Muhammad, Aleem, Muhammad, Ahmed, Usman.  2019.  Graph Centrality Based Spam SMS Detection. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :629–633.

Short messages usage has been tremendously increased such as SMS, tweets and status updates. Due to its popularity and ease of use, many companies use it for advertisement purpose. Hackers also use SMS to defraud users and steal personal information. In this paper, the use of Graphs centrality metrics is proposed for spam SMS detection. The graph centrality measures: degree, closeness, and eccentricity are used for classification of SMS. Graphs for each class are created using labeled SMS and then unlabeled SMS is classified using the centrality scores of the token available in the unclassified SMS. Our results show that highest precision and recall is achieved by using degree centrality. Degree centrality achieved the highest precision i.e. 0.81 and recall i.e., 0.76 for spam messages.

2020-01-28
Calot, Enrique P., Ierache, Jorge S., Hasperué, Waldo.  2019.  Document Typist Identification by Classification Metrics Applying Keystroke Dynamics Under Unidealised Conditions. 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW). 8:19–24.

Keystroke Dynamics is the study of typing patterns and rhythm for personal identification and traits. Keystrokes may be analysed as fixed text such as passwords or as continuous typed text such as documents. This paper reviews different classification metrics for continuous text, such as the A and R metrics, Canberra, Manhattan and Euclidean and introduces a variant of the Minkowski distance. To test the metrics, we adopted a substantial dataset containing 239 thousand records acquired under real, harsh, and unidealised conditions. We propose a new parameter for the Minkowski metric, and we reinforce another for the A metric, as initially stated by its authors.

2020-01-27
Inayoshi, Hiroki, Kakei, Shohei, Takimoto, Eiji, Mouri, Koichi, Saito, Shoichi.  2019.  Prevention of Data Leakage due to Implicit Information Flows in Android Applications. 2019 14th Asia Joint Conference on Information Security (AsiaJCIS). :103–110.
Dynamic Taint Analysis (DTA) technique has been developed for analysis and understanding behavior of Android applications and privacy policy enforcement. Meanwhile, implicit information flows (IIFs) are major concern of security researchers because IIFs can evade DTA technique easily and give attackers an advantage over the researchers. Some researchers suggested approaches to the issue and developed analysis systems supporting privacy policy enforcement against IIF-accompanied attacks; however, there is still no effective technique of comprehensive analysis and privacy policy enforcement against IIF-accompanied attacks. In this paper, we propose an IIF detection technique to enforce privacy policy against IIF-accompanied attacks in Android applications. We developed a new analysis tool, called Smalien, that can discover data leakage caused by IIF-contained information flows as well as explicit information flows. We demonstrated practicability of Smalien by applying it to 16 IIF tricks from ScrubDroid and two IIF tricks from DroidBench. Smalien enforced privacy policy successfully against all the tricks except one trick because the trick loads code dynamically from a remote server at runtime, and Smalien cannot analyze any code outside of a target application. The results show that our approach can be a solution to the current attacker-superior situation.
2020-01-21
Izem, Acia, Wakrim, Mohamed, Ghadi, Abderrahim.  2019.  Logical Topology of Networks Implementing IPv6 Addressing. Proceedings of the 4th International Conference on Smart City Applications. :1–10.
The massive growth of the global routing tables is one of the biggest problems that still face internet nowadays. This problem is mainly caused by the random distribution of IPv4 addresses. With the immigration to IPv6 and the large ranges of addresses provided by this protocol, it is crucial to wisely manage the assignment of IPv6 prefixes. In this paper, we propose a process to generate a logical topology of IPv6 networks. This topology uses perfectly the summarization technique and consists in representing the summary routes in hierarchical manner such that large range of addresses represents several smaller ranges. The proposed aggregation process optimizes and divides up the routing tables which may help resolve the problem of the explosive growth of internet routing tables. Furthermore, the logical topology can be easly customized to fit the features of the routers that are used in the network.
Petrovska, Jovana, Memeti, Agon, Imeri, Florinda.  2019.  SOA Approach - Identity and Access Management for the Risk Management Platform. 2019 8th Mediterranean Conference on Embedded Computing (MECO). :1–4.
The Risk Management system should help customs to more easily and effectively detect irregularities in import, export or transit of goods. Customs administrations today are required to provide extensive facilitation while maintaining control over the international movement of goods, means of transport and persons. The level of risk is determined in the context of the priorities of the Customs administrations e.g. whether the priority is collection of duties and taxes or checking prohibitions and restrictions or any other specific area that has been identified. The aim of the proposed platform in this paper is to achieve a high-quality, multi-layered approach to risk management that is effective and efficient, i.e. the platform is built on decoupled microservices, the different components are working together and an interruption in one segment does not have major effect on the overall system. The main motivation behind this case study is the hands-on experience we have and the close proximity to the project, i.e. information exchange and team discussions as the main available resources.
Iriqat, Yousef Mohammad, Ahlan, Abd Rahman, Molok, Nurul Nuha Abdul.  2019.  Information Security Policy Perceived Compliance Among Staff in Palestine Universities: An Empirical Pilot Study. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :580–585.

In today's interconnected world, universities recognize the importance of protecting their information assets from internal and external threats. Being the possible insider threats to Information Security, employees are often coined as the weakest link. Both employees and organizations should be aware of this raising challenge. Understanding staff perception of compliance behaviour is critical for universities wanting to leverage their staff capabilities to mitigate Information Security risks. Therefore, this research seeks to get insights into staff perception based on factors adopted from several theories by using proposed constructs i.e. "perceived" practices/policies and "perceived" intention to comply. Drawing from the General Deterrence Theory, Protection Motivation Theory, Theory of Planned Behaviour and Information Reinforcement, within the context of Palestine universities, this paper integrates staff awareness of Information Security Policies (ISP) countermeasures as antecedents to ``perceived'' influencing factors (perceived sanctions, perceived rewards, perceived coping appraisal, and perceived information reinforcement). The empirical study is designed to follow a quantitative research approaches, use survey as a data collection method and questionnaires as the research instruments. Partial least squares structural equation modelling is used to inspect the reliability and validity of the measurement model and hypotheses testing for the structural model. The research covers ISP awareness among staff and seeks to assert that information security is the responsibility of all academic and administrative staff from all departments. Overall, our pilot study findings seem promising, and we found strong support for our theoretical model.

Ikany, Joris, Jazri, Husin.  2019.  A Symptomatic Framework to Predict the Risk of Insider Threats. 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD). :1–5.
The constant changing of technologies have brought to critical infrastructure organisations numerous information security threats such as insider threat. Critical infrastructure organisations have difficulties to early detect and capture the possible vital signs of insider threats due sometimes to lack of effective methodologies or frameworks. It is from this viewpoint that, this paper proposes a symptomatic insider threat risk assessments framework known as Insider Threat Framework for Namibia Critical Infrastructure Organization (ITFNACIO), aimed to predict the probable signs of insider threat based on Symptomatic Analysis (SA), and develop a prototype as a proof of concept. A case study was successfully used to validate and implement the proposed framework; hence, qualitative methodology was employed throughout the whole research process where two (2) insider threats were captured. The proposed insider threat framework can be further developed in multiple cases and a more automated system able to trigger an early warning system of possible insider threat events.
2020-01-20
Ingols, Kyle, Chu, Matthew, Lippmann, Richard, Webster, Seth, Boyer, Stephen.  2009.  Modeling Modern Network Attacks and Countermeasures Using Attack Graphs. 2009 Annual Computer Security Applications Conference. :117–126.
By accurately measuring risk for enterprise networks, attack graphs allow network defenders to understand the most critical threats and select the most effective countermeasures. This paper describes substantial enhancements to the NetSPA attack graph system required to model additional present-day threats (zero-day exploits and client-side attacks) and countermeasures (intrusion prevention systems, proxy firewalls, personal firewalls, and host-based vulnerability scans). Point-to-point reachability algorithms and structures were extensively redesigned to support "reverse" reachability computations and personal firewalls. Host-based vulnerability scans are imported and analyzed. Analysis of an operational network with 84 hosts demonstrates that client-side attacks pose a serious threat. Experiments on larger simulated networks demonstrated that NetSPA's previous excellent scaling is maintained. Less than two minutes are required to completely analyze a four-enclave simulated network with more than 40,000 hosts protected by personal firewalls.
Ishaque, Mohammed, Hudec, Ladislav.  2019.  Feature extraction using Deep Learning for Intrusion Detection System. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–5.

Deep Learning is an area of Machine Learning research, which can be used to manipulate large amount of information in an intelligent way by using the functionality of computational intelligence. A deep learning system is a fully trainable system beginning from raw input to the final output of recognized objects. Feature selection is an important aspect of deep learning which can be applied for dimensionality reduction or attribute reduction and making the information more explicit and usable. Deep learning can build various learning models which can abstract unknown information by selecting a subset of relevant features. This property of deep learning makes it useful in analysis of highly complex information one which is present in intrusive data or information flowing with in a web system or a network which needs to be analyzed to detect anomalies. Our approach combines the intelligent ability of Deep Learning to build a smart Intrusion detection system.

Ohata, Keita, Adachi, Masakazu, Kusaka, Keisuke, Itoh, Jun-Ichi.  2019.  Three-phase AC-DC Converter for EV Rapid Charging with Wireless Communication for Decentralized Controller. 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia). :3033–3039.

This paper proposes a multi-modular AC-DC converter system using wireless communication for a rapid charger of electric vehicles (EVs). The multi-modular topology, which consists of multiple modules, has an advantage on the expandability regarding voltage and power. In the proposed system, the input current and output voltage are controlled by each decentralized controller, which wirelessly communicates to the main controller, on each module. Thus, high-speed communication between the main and modules is not required. As the results in a reduced number of signal lines. The fundamental effectiveness of the proposed system is verified with a 3-kW prototype. In the experimented results, the input current imbalance rate is reduced from 49.4% to 0.1%, where total harmonic distortion is less than 3%.

2020-01-13
Ivkic, Igor, Mauthe, Andreas, Tauber, Markus.  2019.  Towards a Security Cost Model for Cyber-Physical Systems. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–7.
In times of Industry 4.0 and cyber-physical systems (CPS) providing security is one of the biggest challenges. A cyber attack launched at a CPS poses a huge threat, since a security incident may affect both the cyber and the physical world. Since CPS are very flexible systems, which are capable of adapting to environmental changes, it is important to keep an overview of the resulting costs of providing security. However, research regarding CPS currently focuses more on engineering secure systems and does not satisfactorily provide approaches for evaluating the resulting costs. This paper presents an interaction-based model for evaluating security costs in a CPS. Furthermore, the paper demonstrates in a use case driven study, how this approach could be used to model the resulting costs for guaranteeing security.
van Kerkhoven, Jason, Charlebois, Nathaniel, Robertson, Alex, Gibson, Brydon, Ahmed, Arslan, Bouida, Zied, Ibnkahla, Mohamed.  2019.  IPv6-Based Smart Grid Communication over 6LoWPAN. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Smart Grid is a major element of the Smart City concept that enables two-way communication of energy data between electric utilities and their consumers. These communication technologies are going through sharp modernization to meet future demand growth and to achieve reliability, security, and efficiency of the electric grid. In this paper, we implement an IPv6 based two-way communication system between the transformer agent (TA), installed at local electric transformer and various customer agents (CAs), connected to customer's smart meter. Various homes share their energy usage with the TA which in turn sends the utility's recommendations to the CAs. Raspberry Pi is used as hardware for all the CAs and the TA. We implement a self-healing mesh network between all nodes using OpenLab IEEE 802.15.4 chips and Routing Protocol for Low-Power and Lossy Networks (RPL), and the data is secured by RSA/AES keys. Several tests have been conducted in real environments, inside and outside of Carleton University, to test the performance of this communication network in various obstacle settings. In this paper, we highlight the details behind the implementation of this IPv6-based smart grid communication system, the related challenges, and the proposed solutions.
2020-01-07
Sakr, Ahmed S., El–kafrawy, P M., Abdullkader, Hatem M., Ibrahem, Hani M..  2018.  An Efficient Framework for Big Data Security Based on Selection Encryption on Amazonec2. 2018 1st International Conference on Computer Applications Information Security (ICCAIS). :1-5.

With the wide use of smart device made huge amount of information arise. This information needed new methods to deal with it from that perspective big data concept arise. Most of the concerns on big data are given to handle data without concentrating on its security. Encryption is the best use to keep data safe from malicious users. However, ordinary encryption methods are not suitable for big data. Selective encryption is an encryption method that encrypts only the important part of the message. However, we deal with uncertainty to evaluate the important part of the message. The problem arises when the important part is not encrypted. This is the motivation of the paper. In this paper we propose security framework to secure important and unimportant portion of the message to overcome the uncertainty. However, each will take a different encryption technique for better performance without losing security. The framework selects the important parts of the message to be encrypted with a strong algorithm and the weak part with a medium algorithm. The important of the word is defined according to how its origin frequently appears. This framework is applied on amazon EC2 (elastic compute cloud). A comparison between the proposed framework, the full encryption method and Toss-A-Coin method are performed according to encryption time and throughput. The results showed that the proposed method gives better performance according to encryption time, throughput than full encryption.

2020-01-02
Jung, Byungho, Kim, Taeguen, Im, Eul Gyu.  2018.  Malware Classification Using Byte Sequence Information. Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems. :143–148.

The number of new malware and new malware variants have been increasing continuously. Security experts analyze malware to capture the malicious properties of malware and to generate signatures or detection rules, but the analysis overheads keep increasing with the increasing number of malware. To analyze a large amount of malware, various kinds of automatic analysis methods are in need. Recently, deep learning techniques such as convolutional neural network (CNN) and recurrent neural network (RNN) have been applied for malware classifications. The features used in the previous approches are mostly based on API (Application Programming Interface) information, and the API invocation information can be obtained through dynamic analysis. However, the invocation information may not reflect malicious behaviors of malware because malware developers use various analysis avoidance techniques. Therefore, deep learning-based malware analysis using other features still need to be developed to improve malware analysis performance. In this paper, we propose a malware classification method using the deep learning algorithm based on byte information. Our proposed method uses images generated from malware byte information that can reflect malware behavioral context, and the convolutional neural network-based sentence analysis is used to process the generated images. We performed several experiments to show the effecitveness of our proposed method, and the experimental results show that our method showed higher accuracy than the naive CNN model, and the detection accuracy was about 99%.

2019-12-30
Iqbal, Maryam, Iqbal, Mohammad Ayman.  2019.  Attacks Due to False Data Injection in Smart Grids: Detection Protection. 2019 1st Global Power, Energy and Communication Conference (GPECOM). :451-455.

As opposed to a traditional power grid, a smart grid can help utilities to save energy and therefore reduce the cost of operation. It also increases reliability of the system In smart grids the quality of monitoring and control can be adequately improved by incorporating computing and intelligent communication knowledge. However, this exposes the system to false data injection (FDI) attacks and the system becomes vulnerable to intrusions. Therefore, it is important to detect such false data injection attacks and provide an algorithm for the protection of system against such attacks. In this paper a comparison between three FDI detection methods has been made. An H2 control method has then been proposed to detect and control the false data injection on a 12th order model of a smart grid. Disturbances and uncertainties were added to the system and the results show the system to be fully controllable. This paper shows the implementation of a feedback controller to fully detect and mitigate the false data injection attacks. The controller can be incorporated in real life smart grid operations.

Yakymenko, I. Z., Kasianchuk, M. M., Ivasiev, S. V., Melnyk, A. M., Nykolaichuk, Ya. M..  2018.  Realization of RSA Cryptographic Algorithm Based on Vector-Module Method of Modular Exponention. 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). :550-554.

The improvement of the implementation of the RSA cryptographic algorithm for encrypting / decoding information flows based on the use of the vector-modular method of modular exponential is presented in this paper. This makes it possible to replace the complex operation of modular multiplication with the addition operation, which increases the speed of the RSA cryptosystem. The scheme of algorithms of modular multiplication and modular exponentiation is presented. The analytical and graphical comparison of the time complexities of the proposed and known approaches shows that the use of the vector-modular method reduces the temporal complexity of the modular exponential compared to the classical one.

Morita, Kazunari, Yoshimura, Hiroki, Nishiyama, Masashi, Iwai, Yoshio.  2018.  Protecting Personal Information using Homomorphic Encryption for Person Re-identification. 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE). :166–167.
We investigate how to protect features corresponding to personal information using homomorphic encryption when matching people in several camera views. Homomorphic encryption can compute a distance between features without decryption. Thus, our method is able to use a computing server on a public network while protecting personal information. To apply homomorphic encryption, our method uses linear quantization to represent each element of the feature as integers. Experimental results show that there is no significant difference in the accuracy of person re-identification with or without homomorphic encryption and linear quantization.
2019-12-18
Kolisnyk, Maryna, Kharchenko, Vyacheslav, Iryna, Piskachova.  2019.  IoT Server Availability Considering DDoS-Attacks: Analysis of Prevention Methods and Markov Model. 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT). :51-56.

The server is an important for storing data, collected during the diagnostics of Smart Business Center (SBC) as a subsystem of Industrial Internet of Things including sensors, network equipment, components for start and storage of monitoring programs and technical diagnostics. The server is exposed most often to various kind of attacks, in particular, aimed at processor, interface system, random access memory. The goal of the paper is analyzing the methods of the SBC server protection from malicious actions, as well as the development and investigation of the Markov model of the server's functioning in the SBC network, taking into account the impact of DDoS-attacks.

2019-12-17
Iordanou, Costas, Smaragdakis, Georgios, Poese, Ingmar, Laoutaris, Nikolaos.  2018.  Tracing Cross Border Web Tracking. Proceedings of the Internet Measurement Conference 2018. :329-342.

A tracking flow is a flow between an end user and a Web tracking service. We develop an extensive measurement methodology for quantifying at scale the amount of tracking flows that cross data protection borders, be it national or international, such as the EU28 border within which the General Data Protection Regulation (GDPR) applies. Our methodology uses a browser extension to fully render advertising and tracking code, various lists and heuristics to extract well known trackers, passive DNS replication to get all the IP ranges of trackers, and state-of-the art geolocation. We employ our methodology on a dataset from 350 real users of the browser extension over a period of more than four months, and then generalize our results by analyzing billions of web tracking flows from more than 60 million broadband and mobile users from 4 large European ISPs. We show that the majority of tracking flows cross national borders in Europe but, unlike popular belief, are pretty well confined within the larger GDPR jurisdiction. Simple DNS redirection and PoP mirroring can increase national confinement while sealing almost all tracking flows within Europe. Last, we show that cross boarder tracking is prevalent even in sensitive and hence protected data categories and groups including health, sexual orientation, minors, and others.

Nguyen, Viet, Ibrahim, Mohamed, Truong, Hoang, Nguyen, Phuc, Gruteser, Marco, Howard, Richard, Vu, Tam.  2018.  Body-Guided Communications: A Low-Power, Highly-Confined Primitive to Track and Secure Every Touch. Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. :353-368.

The growing number of devices we interact with require a convenient yet secure solution for user identification, authorization and authentication. Current approaches are cumbersome, susceptible to eavesdropping and relay attacks, or energy inefficient. In this paper, we propose a body-guided communication mechanism to secure every touch when users interact with a variety of devices and objects. The method is implemented in a hardware token worn on user's body, for example in the form of a wristband, which interacts with a receiver embedded inside the touched device through a body-guided channel established when the user touches the device. Experiments show low-power (uJ/bit) operation while achieving superior resilience to attacks, with the received signal at the intended receiver through the body channel being at least 20dB higher than that of an adversary in cm range.

2019-12-16
McDermott, Christopher D., Jeannelle, Bastien, Isaacs, John P..  2019.  Towards a Conversational Agent for Threat Detection in the Internet of Things. 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

A conversational agent to detect anomalous traffic in consumer IoT networks is presented. The agent accepts two inputs in the form of user speech received by Amazon Alexa enabled devices, and classified IDS logs stored in a DynamoDB Table. Aural analysis is used to query the database of network traffic, and respond accordingly. In doing so, this paper presents a solution to the problem of making consumers situationally aware when their IoT devices are infected, and anomalous traffic has been detected. The proposed conversational agent addresses the issue of how to present network information to non-technical users, for better comprehension, and improves awareness of threats derived from the mirai botnet malware.

Bukhari, Syed Nisar, Ahmad Dar, Muneer, Iqbal, Ummer.  2018.  Reducing attack surface corresponding to Type 1 cross-site scripting attacks using secure development life cycle practices. 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). :1–4.

While because the range of web users have increased exponentially, thus has the quantity of attacks that decide to use it for malicious functions. The vulnerability that has become usually exploited is thought as cross-site scripting (XSS). Cross-site Scripting (XSS) refers to client-side code injection attack whereby a malicious user will execute malicious scripts (also usually stated as a malicious payload) into a legitimate web site or web based application. XSS is amongst the foremost rampant of web based application vulnerabilities and happens once an internet based application makes use of un-validated or un-encoded user input at intervals the output it generates. In such instances, the victim is unaware that their data is being transferred from a website that he/she trusts to a different site controlled by the malicious user. In this paper we shall focus on type 1 or "non-persistent cross-site scripting". With non-persistent cross-site scripting, malicious code or script is embedded in a Web request, and then partially or entirely echoed (or "reflected") by the Web server without encoding or validation in the Web response. The malicious code or script is then executed in the client's Web browser which could lead to several negative outcomes, such as the theft of session data and accessing sensitive data within cookies. In order for this type of cross-site scripting to be successful, a malicious user must coerce a user into clicking a link that triggers the non-persistent cross-site scripting attack. This is usually done through an email that encourages the user to click on a provided malicious link, or to visit a web site that is fraught with malicious links. In this paper it will be discussed and elaborated as to how attack surfaces related to type 1 or "non-persistent cross-site scripting" attack shall be reduced using secure development life cycle practices and techniques.

2019-12-05
Izumida, Tomonori, Mori, Akira, Hashimoto, Masatomo.  2018.  Context-Sensitive Flow Graph and Projective Single Assignment Form for Resolving Context-Dependency of Binary Code. Proceedings of the 13th Workshop on Programming Languages and Analysis for Security. :48-53.

Program analysis on binary code is considered as difficult because one has to resolve destinations of indirect jumps. However, there is another difficulty of context-dependency that matters when one processes binary programs that are not compiler generated. In this paper, we propose a novel approach for tackling these difficulties and describe a way to reconstruct a control flow from a binary program with no extra assumptions than the operational meaning of machine instructions.