Visible to the public Biblio

Found 3516 results

Filters: First Letter Of Last Name is M  [Clear All Filters]
2022-09-30
Hutto, Kevin, Mooney, Vincent J..  2021.  Sensing with Random Encoding for Enhanced Security in Embedded Systems. 2021 10th Mediterranean Conference on Embedded Computing (MECO). :1–6.
Embedded systems in physically insecure environments are subject to additional security risk via capture by an adversary. A captured microchip device can be reverse engineered to recover internal buffer data that would otherwise be inaccessible through standard IO mechanisms. We consider an adversary who has sufficient ability to gain all internal bits and logic from a device at the time of capture as an unsolved threat. In this paper we present a novel sensing architecture that enhances embedded system security by randomly encoding sensed values. We randomly encode data at the time of sensing to minimize the amount of plaintext data present on a device in buffer memory. We encode using techniques that are unintelligible to an adversary even with full internal bit knowledge. The encoding is decipherable by a trusted home server, and we have provided an architecture to perform this decoding. Our experimental results show the proposed architecture meets timing requirements needed to perform communications with a satellite utilizing short-burst data, such as in remote sensing telemetry and tracking applications.
Kabulov, Anvar, Saymanov, Islambek, Yarashov, Inomjon, Muxammadiev, Firdavs.  2021.  Algorithmic method of security of the Internet of Things based on steganographic coding. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1–5.
In the Internet of Things, it is more important than ever to effectively address the problem of secure transmission based on steganographic substitution by synthesizing digital sensor data. In this case, the degree to which the grayscale message is obscured is a necessary issue. To ensure information security in IoT systems, various methods are used and information security problems are solved to one degree or another. The article proposes a method and algorithm for a computer image in grayscale, in which the value of each pixel is one sample, representing the amount of light, carrying only information about the intensity. The proposed method in grayscale using steganographic coding provides a secure implementation of data transmission in the IoT system. Study results were analyzed using PSNR (Peak Signal to Noise Ratio).
Mpofu, Nkosinathi, Chikati, Ronald, Ndlovu, Mandla.  2021.  Operational framework for Enhancing Trust in Identity Management as-a-Service (IdMaaS). 2021 3rd International Multidisciplinary Information Technology and Engineering Conference (IMITEC). :1–6.
The promise of access to contextual expertise, advanced security tools and an increase in staff augmentation coupled with reduced computing costs has indisputably made cloud computing a computing platform of choice, so enticing that many organizations had to migrate some if not all their services to the cloud. Identity-management-as-a-service (IdMaaS), however, is still struggling to mature due to lack of trust. Lack of trust arises from losing control over the identity information (user credentials), identity management system as well as the underlying infrastructure, raising a fear of loss of confidentiality, integrity and availability of both the identities and the identity management system. This paper recognizes the need for a trust framework comprising of both the operational and technical Frameworks as a holistic approach towards enhancing trust in IdMaaS. To this end however, only the operational Framework will form the core of this paper. The success of IdMaaS will add to the suite of other matured identity management technologies, spoiling the would-be identity service consumers with a wide choice of identity management paradigms to pick from, at the same time opening entrepreneurial opportunities to cloud players.
Selifanov, Valentin V., Doroshenko, Ivan E., Troeglazova, Anna V., Maksudov, Midat M..  2021.  Acceptable Variants Formation Methods of Organizational Structure and the Automated Information Security Management System Structure. 2021 XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering (APEIE). :631–635.
To ensure comprehensive information protection, it is necessary to use various means of information protection, distributed by levels and segments of the information system. This creates a contradiction, which consists in the presence of many different means of information protection and the inability to ensure their joint coordinated application in ensuring the protection of information due to the lack of an automated control system. One of the tasks that contribute to the solution of this problem is the task of generating a feasible organizational structure and the structure of such an automated control system, the results of which would provide these options and choose the one that is optimal under given initial parameters and limitations. The problem is solved by reducing the General task with particular splitting the original graph of the automated cyber defense control system into subgraphs. As a result, the organizational composition and the automated cyber defense management system structures will provide a set of acceptable variants, on the basis of which the optimal choice is made under the given initial parameters and restrictions. As a result, admissible variants for the formation technique of organizational structure and structure by the automated control system of cyber defense is received.
Min, Huang, Li, Cheng Yun.  2021.  Construction of information security risk assessment model based on static game. 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT). :647–650.
Game theory is a branch of modern mathematics, which is a mathematical method to study how decision-makers should make decisions in order to strive for the maximum interests in the process of competition. In this paper, from the perspective of offensive and defensive confrontation, using game theory for reference, we build a dynamic evaluation model of information system security risk based on static game model. By using heisani transformation, the uncertainty of strategic risk of offensive and defensive sides is transformed into the uncertainty of each other's type. The security risk of pure defense strategy and mixed defense strategy is analyzed quantitatively, On this basis, an information security risk assessment algorithm based on static game model is designed.
Burgetová, Ivana, Matoušek, Petr, Ryšavý, Ondřej.  2021.  Anomaly Detection of ICS Communication Using Statistical Models. 2021 17th International Conference on Network and Service Management (CNSM). :166–172.
Industrial Control System (ICS) transmits control and monitoring data between devices in an industrial environment that includes smart grids, water and gas distribution, or traffic control. Unlike traditional internet communication, ICS traffic is stable, periodical, and with regular communication patterns that can be described using statistical modeling. By observing selected features of ICS transmission, e.g., packet direction and inter-arrival times, we can create a statistical profile of the communication based on distribution of features learned from the normal ICS traffic. This paper demonstrates that using statistical modeling, we can detect various anomalies caused by irregular transmissions, device or link failures, and also cyber attacks like packet injection, scanning, or denial of service (DoS). The paper shows how a statistical model is automatically created from a training dataset. We present two types of statistical profiles: the master-oriented profile for one-to-many communication and the peer-to-peer profile that describes traffic between two ICS devices. The proposed approach is fast and easy to implement as a part of an intrusion detection system (IDS) or an anomaly detection (AD) module. The proof-of-concept is demonstrated on two industrial protocols: IEC 60870-5-104 (aka IEC 104) and IEC 61850 (Goose).
Matoušek, Petr, Havlena, Vojtech, Holík, Lukáš.  2021.  Efficient Modelling of ICS Communication For Anomaly Detection Using Probabilistic Automata. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :81–89.
Industrial Control System (ICS) communication transmits monitoring and control data between industrial processes and the control station. ICS systems cover various domains of critical infrastructure such as the power plants, water and gas distribution, or aerospace traffic control. Security of ICS systems is usually implemented on the perimeter of the network using ICS enabled firewalls or Intrusion Detection Systems (IDSs). These techniques are helpful against external attacks, however, they are not able to effectively detect internal threats originating from a compromised device with malicious software. In order to mitigate or eliminate internal threats against the ICS system, we need to monitor ICS traffic and detect suspicious data transmissions that differ from common operational communication. In our research, we obtain ICS monitoring data using standardized IPFIX flows extended with meta data extracted from ICS protocol headers. Unlike other anomaly detection approaches, we focus on modelling the semantics of ICS communication obtained from the IPFIX flows that describes typical conversational patterns. This paper presents a technique for modelling ICS conversations using frequency prefix trees and Deterministic Probabilistic Automata (DPA). As demonstrated on the attack scenarios, these models are efficient to detect common cyber attacks like the command injection, packet manipulation, network scanning, or lost connection. An important advantage of our approach is that the proposed technique can be easily integrated into common security information and event management (SIEM) systems with Netflow/IPFIX support. Our experiments are performed on IEC 60870-5-104 (aka IEC 104) control communication that is widely used for the substation control in smart grids.
2022-09-29
Rodrigues, André Filipe, Monteiro, Bruno Miguel, Pedrosa, Isabel.  2021.  Cybersecurity risks : A behavioural approach through the influence of media and information literacy. 2021 16th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
The growing use of digital media has been accompanied by an increase of the risks associated with the use of information systems, notably cybersecurity risks. In turn, the increasing use of information systems has an impact on users' media and information literacy. This research aims to address the relationship between media and information literacy, and the adoption of risky cybersecurity behaviours. This approach will be carried out through the definition of a conceptual framework supported by a literature review, and a quantitative research of the relationships mentioned earlier considering a sample composed by students of a Higher Education Institution.
Michaelides, N. V..  2021.  Examining attitudes towards cybersecurity compliance through the lens of the psychological contract. Competitive Advantage in the Digital Economy (CADE 2021). 2021:99–104.
This research proposal defines the aim to explore the perceptions and experiences of employees through a global pandemic. In an exploratory qualitative study, utilising thematic analysis, the intention is to take an interpretivist position to examine participants' accounts of working from home during a pandemic, by looking through the psychological contract (Rousseau, 1996a) lens to better understand this phenomenon. This research serves to offer a potential line of enquiry when it comes to the human factors of cyber and information security behaviour and any themes which may overlap with psychological contract breaches (PCB). Previous research has suggested that the psychological contract can impact on employee commitment towards their organisations (Jabeen, Behery and Hossam, 2015), and employees' attitudes towards cyber security affect the frequency in engaging in risky online behaviours, (Hadlington, 2018), this study aims to draw out any themes around these areas through semi-structured interviews with employees in a global law firm.
2022-09-20
Bentahar, Atef, Meraoumia, Abdallah, Bendjenna, Hakim, Chitroub, Salim, Zeroual, Abdelhakim.  2021.  Eigen-Fingerprints-Based Remote Authentication Cryptosystem. 2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI). :1—6.
Nowadays, biometric is a most technique to authenticate /identify human been, because its resistance against theft, loss or forgetfulness. However, biometric is subject to different transmission attacks. Today, the protection of the sensitive biometric information is a big challenge, especially in current wireless networks such as internet of things where the transmitted data is easy to sniffer. For that, this paper proposes an Eigens-Fingerprint-based biometric cryptosystem, where the biometric feature vectors are extracted by the Principal Component Analysis technique with an appropriate quantification. The key-binding principle incorporated with bit-wise and byte-wise correcting code is used for encrypting data and sharing key. Several recognition rates and computation time are used to evaluate the proposed system. The findings show that the proposed cryptosystem achieves a high security without decreasing the accuracy.
Simjanović, Dušan J., Milošević, Dušan M., Milošević, Mimica R..  2021.  Fuzzy AHP based Ranking of Cryptography Indicators. 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (℡SIKS). :237—240.
The progression of cryptographic attacks in the ICT era doubtless leads to the development of new cryptographic algorithms and assessment, and evaluation of the existing ones. In this paper, the artificial intelligence application, through the fuzzy analytic hierarchy process (FAHP) implementation, is used to rank criteria and sub-criteria on which the algorithms are based to determine the most promising criteria and optimize their use. Out of fifteen criteria, security soundness, robustness and hardware failure distinguished as significant ones.
Rajput, Prashant Hari Narayan, Sarkar, Esha, Tychalas, Dimitrios, Maniatakos, Michail.  2021.  Remote Non-Intrusive Malware Detection for PLCs based on Chain of Trust Rooted in Hardware. 2021 IEEE European Symposium on Security and Privacy (EuroS&P). :369—384.
Digitization has been rapidly integrated with manufacturing industries and critical infrastructure to increase efficiency, productivity, and reduce wastefulness, a transition being labeled as Industry 4.0. However, this expansion, coupled with the poor cybersecurity posture of these Industrial Internet of Things (IIoT) devices, has made them prolific targets for exploitation. Moreover, modern Programmable Logic Controllers (PLC) used in the Operational Technology (OT) sector are adopting open-source operating systems such as Linux instead of proprietary software, making such devices susceptible to Linux-based malware. Traditional malware detection approaches cannot be applied directly or extended to such environments due to the unique restrictions of these PLC devices, such as limited computational power and real-time requirements. In this paper, we propose ORRIS, a novel lightweight and out-of-the-device framework that detects malware at both kernel and user-level by processing the information collected using the Joint Test Action Group (JTAG) interface. We evaluate ORRIS against in-the-wild Linux malware achieving maximum detection accuracy of ≈99.7% with very few false-positive occurrences, a result comparable to the state-of-the-art commercial products. Moreover, we also develop and demonstrate a real-time implementation of ORRIS for commercial PLCs.
Zhao, Lianying, Oshman, Muhammad Shafayat, Zhang, Mengyuan, Moghaddam, Fereydoun Farrahi, Chander, Shubham, Pourzandi, Makan.  2021.  Towards 5G-ready Security Metrics. ICC 2021 - IEEE International Conference on Communications. :1—6.
The fifth-generation (5G) mobile telecom network has been garnering interest in both academia and industry, with better flexibility and higher performance compared to previous generations. Along with functionality improvements, new attack vectors also made way. Network operators and regulatory organizations wish to have a more precise idea about the security posture of 5G environments. Meanwhile, various security metrics for IT environments have been around and attracted the community’s attention. However, 5G-specific factors are less taken into consideration.This paper considers such 5G-specific factors to identify potential gaps if existing security metrics are to be applied to the 5G environments. In light of the layered nature and multi-ownership, the paper proposes a new approach to the modular computation of security metrics based on cross-layer projection as a means of information sharing between layers. Finally, the proposed approach is evaluated through simulation.
2022-09-16
Kaur, Satwinder, Kuttan, Deepak B, Mittal, Nitin.  2021.  An Energy-saving Approach for Error control Codes in Wireless Sensor Networks. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). :313—316.
Wireless Sensor Networks (WSNs) have limited energy resource which requires authentic data transmission at a minimum cost. The major challenge is to deploy WSN with limited energy and lifetime of nodes while taking care of secure data communication. The transmission of data from the wireless channels may cause many losses such as fading, noise, bit error rate increases as well as deplete the energy resource from the nodes. To reduce the adverse effects of losses and to save power usage, error control coding (ECC) techniques are widely used and it also brings coding gain. Since WSN have limited energy resource so the selection of ECC is very difficult as both power consumption, as well as BER, has also taken into consideration. This research paper reviews different types of models, their applications, limitations of the sensor networks, and what are different types of future works going to overcome the limitations.
Mishra, Suman, Radhika, K, Babu, Y.Murali Mohan.  2021.  Error Detection And Correction In TCAMS Based SRAM. 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC). :283—287.
Ternary content addressable memories (TCAMs) widely utilized in network systems to enforce the labeling of packets. For example, they are used for packet forwarding, security, and software-defined networks (SDNs). TCAMs are typically deployed as standalone instruments or as an embedded intellectual property component on application-specific integrated circuits. However, field-programmable gate arrays (FPGAs) do not have TCAM bases. However, FPGAs’ versatility allows them to appeal for SDN deployment, and most FPGA vendors have SDN production kits. Those need to help TCAM features and then simulate TCAMs using the FPGA logic blocks. Several methods to reproduction TCAMs on FPGAs have been introduced in recent years. Some of them use a huge multiple storage blocks within modern FPGAs to incorporate TCAMs. A trouble while remembrances are that soft errors that corrupt stored bits can affect them. Memories may be covered by a parity test to identify errors or by an error correction code, although this involves extra bits in a word frame. This brief considers memory security used to simulate TCAMs. It is shown in particular that by leveraging the assumption its part of potential memory information is true, most single-bit errors can be resolved when memoirs are emulated with a parity bit.
Abdaoui, Abderrazak, Erbad, Aiman, Al-Ali, Abdulla, Mohamed, Amr, Guizani, Mohsen.  2021.  A Robust Protocol for Smart eHealthcare based on Elliptic Curve Cryptography and Fuzzy logic in IoT. 2021 IEEE Globecom Workshops (GC Wkshps). :1—6.

Emerging technologies change the qualities of modern healthcare by employing smart systems for patient monitoring. To well use the data surrounding the patient, tiny sensing devices and smart gateways are involved. These sensing systems have been used to collect and analyze the real-time data remotely in Internet of Medical Thinks (IoM). Since the patient sensed information is so sensitive, the security and privacy of medical data are becoming challenging problem in IoM. It is then important to ensure the security, privacy and integrity of the transmitted data by designing a secure and a lightweight authentication protocol for the IoM. In this paper, in order to improve the authentication and communications in health care applications, we present a novel secure and anonymous authentication scheme. We will use elliptic curve cryptography (ECC) with random numbers generated by fuzzy logic. We simulate IoM scheme using network simulator 3 (NS3) and we employ optimized link state routing protocol (OLSR) algorithm and ECC at each node of the network. We apply some attack algorithms such as Pollard’s ρ and Baby-step Giant-step to evaluate the vulnerability of the proposed scheme.

Mukeshimana, C., Kupriyanov, M. S..  2021.  Adaptive Neuro-fuzzy System (ANFIS) of Information Interaction in Industrial Internet of Things Networks Taking into Account Load Balancing. 2021 II International Conference on Neural Networks and Neurotechnologies (NeuroNT). :43—46.
The main aim of the Internet of things is to improve the safety of the device through inter-Device communication (IDC). Various applications are emerging in Internet of things. Various aspects of Internet of things differ from Internet of things, especially the nodes have more velocity which causes the topology to change rapidly. The requirement of researches in the concept of Internet of things increases rapidly because Internet of things face many challenges on the security, protocols and technology. Despite the fact that the problem of organizing the interaction of IIoT devices has already attracted a lot of attention from many researchers, current research on routing in IIoT cannot effectively solve the problem of data exchange in a self-adaptive and self-organized way, because the number of connected devices is quite large. In this article, an adaptive neuro-fuzzy clustering algorithm is presented for the uniform distribution of load between interacting nodes. We synthesized fuzzy logic and neural network to balance the choice of the optimal number of cluster heads and uniform load distribution between sensors. Comparison is made with other load balancing methods in such wireless sensor networks.
Gowda, Naveen Chandra, Manvi, Sunilkumar S..  2021.  An Efficient Authentication Scheme for Fog Computing Environment using Symmetric Cryptographic methods. 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC). :01—06.

The mechanism of Fog computing is a distributed infrastructure to provide the computations as same as cloud computing. The fog computing environment provides the storage and processing of data in a distributed manner based on the locality. Fog servicing is better than cloud service for working with smart devices and users in a same locale. However the fog computing will inherit the features of the cloud, it also suffers from many security issues as cloud. One such security issue is authentication with efficient key management between the communicating entities. In this paper, we propose a secured two-way authentication scheme with efficient management of keys between the user mobile device and smart devices under the control of the fog server. We made use of operations such as one-way hash (SHA-512) functions, bitwise XOR, and fuzzy extractor function to make the authentication system to be better. We have verified the proposed scheme for its security effectiveness by using a well-used analysis tool ProVerif. We also proved that it can resist multiple attacks and the security overhead is reduced in terms of computation and communication cost as compared to the existing methods.

Shamshad, Salman, Obaidat, Mohammad S., Minahil, Shamshad, Usman, Noor, Sahar, Mahmood, Khalid.  2021.  On the Security of Authenticated Key Agreement Scheme for Fog-driven IoT Healthcare System. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1760—1765.
The convergence of Internet of Things (IoT) and cloud computing is due to the practical necessity for providing broader services to extensive user in distinct environments. However, cloud computing has numerous constraints for applications that require high-mobility and high latency, notably in adversarial situations (e.g. battlefields). These limitations can be elevated to some extent, in a fog computing model because it covers the gap between remote data-center and edge device. Since, the fog nodes are usually installed in remote areas, therefore, they impose the design of fool proof safety solution for a fog-based setting. Thus, to ensure the security and privacy of fog-based environment, numerous schemes have been developed by researchers. In the recent past, Jia et al. (Wireless Networks, DOI: 10.1007/s11276-018-1759-3) designed a fog-based three-party scheme for healthcare system using bilinear. They claim that their scheme can withstand common security attacks. However, in this work we investigated their scheme and show that their scheme has different susceptibilities such as revealing of secret parameters, and fog node impersonation attack. Moreover, it lacks the anonymity of user anonymity and has inefficient login phase. Consequently, we have suggestion with some necessary guidelines for attack resilience that are unheeded by Jia et al.
Massey, Keith, Moazen, Nadia, Halabi, Talal.  2021.  Optimizing the Allocation of Secure Fog Resources based on QoS Requirements. 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :143—148.
Fog computing plays a critical role in the provisioning of computing tasks in the context of Internet of Things (IoT) services. However, the security of IoT services against breaches and attacks relies heavily on the security of fog resources, which must be properly implemented and managed. Increasing security investments and integrating the security aspect into the core processes and operations of fog computing including resource management will increase IoT service protection as well as the trustworthiness of fog service providers. However, this requires careful modeling of the security requirements of IoT services as well as theoretical and experimental evaluation of the tradeoff between security and performance in fog infrastructures. To this end, this paper explores a new model for fog resource allocation according to security and Quality of Service (QoS). The problem is modeled as a multi-objective linear optimization problem and solved using conventional, off-the-shelf optimizers by applying the preemptive method. Specifically, two objective functions were defined: one representing the satisfaction of the security design requirements of IoT services and another that models the communication delay among the different virtual machines belonging to the same service request, which might be deployed on different intermediary fog nodes. The simulation results show that the optimization is efficient and achieves the required level of scalability in fog computing. Moreover, a tradeoff needs to be pondered between the two criteria during the resource allocation process.
2022-09-09
Mostafa, Abdelrahman Ibrahim, Rashed, Abdelrahman Mostafa, Alsherif, Yasmin Ashraf, Enien, Yomna Nagah, Kaoud, Menatalla, Mohib, Ahmed.  2021.  Supply Chain Risk Assessment Using Fuzzy Logic. 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :246—251.
Business's strength arises from the strength of its supply chain. Therefore, a proper supply chain management is vital for business continuity. One of the most challenging parts of SCM is the contract negotiation, and one main aspect of the negotiation is to know the risk associated with each range of quantity agreed on. Currently Managers assess the quantity to be supplied based on a binary way of either full or 0 supply, This paper aims to assess the corresponding quantities risks of the suppliers on a multilayer basis. The proposed approach uses fuzzy logic as an artificial intelligence tool that would develop the verbal terms of managers into numbers to be dealt with. A company that produces fresh frozen vegetables and fruits in Egypt who faces the problem of getting the required quantities from the suppliers with a fulfilment rate of 33% was chosen to apply the proposed model. The model allowed the managers to have full view of risk in their supply chain effectively and decide their needed capacity as well as the negotiation terms with both suppliers and customers. Future work should be the use of more data in the fuzzy database and implement the proposed methodology in an another industry.
Pennekamp, Jan, Alder, Fritz, Matzutt, Roman, Mühlberg, Jan Tobias, Piessens, Frank, Wehrle, Klaus.  2020.  Secure End-to-End Sensing in Supply Chains. 2020 IEEE Conference on Communications and Network Security (CNS). :1—6.
Trust along digitalized supply chains is challenged by the aspect that monitoring equipment may not be trustworthy or unreliable as respective measurements originate from potentially untrusted parties. To allow for dynamic relationships along supply chains, we propose a blockchain-backed supply chain monitoring architecture relying on trusted hardware. Our design provides a notion of secure end-to-end sensing of interactions even when originating from untrusted surroundings. Due to attested checkpointing, we can identify misinformation early on and reliably pinpoint the origin. A blockchain enables long-term verifiability for all (now trustworthy) IoT data within our system even if issues are detected only after the fact. Our feasibility study and cost analysis further show that our design is indeed deployable in and applicable to today’s supply chain settings.
Sangeetha, A. S., Shunmugan, S., Murugan, G..  2020.  Blockchain for IoT Enabled Supply Chain Management - A Systematic Review. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :48—52.
Blockchain will increase supply chains' productivity and accountability, and have a positive effect on anything from warehousing to distribution to payment. To bridge the supply chain visibility gap, blockchain is being deployed because of its security features like immutability, tamper-resistant and hash proof. Blockchain integration with IoT increases the traceability and verifiability of the supply chain management and drastically eradicates the fraudulent activities including bribery, money laundering, forged checks, sanction violations, misrepresentation of goods and services. Blockchain can help to cross-check the verification, identification and authenticity of IoT devices to reduce the frequency and ramifications of fraud in supply chain management. The epidemic outbreak of SARS-CoV-2 has disrupted many global supply chains. The Geneva-based World Economic Forum declared that SARS-CoV-2 exposed supply chain failures can be tackled by blockchain technology. This paper explores the modern methodologies of supply chain management with integration of blockchain and IoT.
Maiti, Ankita, Shilpa, R.G.  2020.  Developing a Framework to Digitize Supply Chain Between Supplier and Manufacturer. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1—6.
Supply chain plays a significant job in an organization making systems between an organization and its supplier to deliver and disperse items and administrations to the last purchasers. Digitization alludes to the way toward moving physical reports into physical documents. Digitization will make incredible open doors for associations and supply chain rehearses. Numerous associations need to turn out to be progressively “advanced” since they have watched the criticality and value of computerized advances for their development and their own organizations. This research study topic presents a review of the supply chain management digitization practices and dreams with a merged image of digitization and stream of data between the Supplier and Manufacturer chain. Value management, in value analysis, assumes a huge job in a viable Digital Supply Chain Management, it is progressively centered around mechanization, digitizing the procedure, and the coordination and reconciliation of the considerable number of components associated with the supply chain. In view of how value-chain management has developed, it assumes an urgent job in managing the ever-expanding unpredictability in supply chains all inclusive. This study presents an overview of the supply chain management digitization practices and visions with a consolidated picture of digitization and flow of information between the Supplier and Manufacturer chain. This study can be further improved by integrating the latest technology and tools AI and IoT-as a future study.
Khan, Aazar Imran, Jain, Samyak, Sharma, Purushottam, Deep, Vikas, Mehrotra, Deepti.  2021.  Stylometric Analysis of Writing Patterns Using Artificial Neural Networks. 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :29—35.
Plagiarism checkers have been widely used to verify the authenticity of dissertation/project submissions. However, when non-verbatim plagiarism or online examinations are considered, this practice is not the best solution. In this work, we propose a better authentication system for online examinations that analyses the submitted text's stylometry for a match of writing pattern of the author by whom the text was submitted. The writing pattern is analyzed over many indicators (i.e., features of one's writing style). This model extracts 27 such features and stores them as the writing pattern of an individual. Stylometric Analysis is a better approach to verify a document's authorship as it doesn't check for plagiarism, but verifies if the document was written by a particular individual and hence completely shuts down the possibility of using text-convertors or translators. This paper also includes a brief comparative analysis of some simpler algorithms for the same problem statement. These algorithms yield results that vary in precision and accuracy and hence plotting a conclusion from the comparison shows that the best bet to tackle this problem is through Artificial Neural Networks.