Visible to the public Biblio

Found 3516 results

Filters: First Letter Of Last Name is M  [Clear All Filters]
2023-01-05
Meziani, Ahlem, Bourouis, Abdelhabib, Chebout, Mohamed Sedik.  2022.  Neutrosophic Data Analytic Hierarchy Process for Multi Criteria Decision Making: Applied to Supply Chain Risk Management. 2022 International Conference on Advanced Aspects of Software Engineering (ICAASE). :1—6.
Today’s Supply Chains (SC) are engulfed in a maelstrom of risks which arise mainly from uncertain, contradictory, and incomplete information. A decision-making process is required in order to detect threats, assess risks, and implements mitigation methods to address these issues. However, Neutrosophic Data Analytic Hierarchy Process (NDAHP) allows for a more realistic reflection of real-world problems while taking into account all factors that lead to effective risk assessment for Multi Criteria Decision-Making (MCDM). The purpose of this paper consists of an implementation of the NDAHP for MCDM aiming to identifying, ranking, prioritizing and analyzing risks without considering SC’ expert opinions. To that end, we proceed, first, for selecting and analyzing the most 23 relevant risk indicators that have a significant impact on the SC considering three criteria: severity, occurrence, and detection. After that, the NDAHP method is implemented and showcased, on the selected risk indicators, throw an illustrative example. Finally, we discuss the usability and effectiveness of the suggested method for the SCRM purposes.
Mefteh, Syrine, Rosdahl, Alexa L., Fagan, Kaitlin G., Kumar, Anirudh V..  2022.  Evaluating Chemical Supply Chain Criticality in the Water Treatment Industry: A Risk Analysis and Mitigation Model. 2022 Systems and Information Engineering Design Symposium (SIEDS). :73—78.
The assurance of the operability of surface water treatment facilities lies in many factors, but the factor with the largest impact on said assurance is the availability of the necessary chemicals. Facilities across the country vary in their processes and sources, but all require chemicals to produce potable water. The purpose of this project was to develop a risk assessment tool to determine the shortfalls and risks in the water treatment industry's chemical supply chain, which was used to produce a risk mitigation plan ensuring plant operability. To achieve this, a Fault Tree was built to address four main areas of concern: (i) market supply and demand, (ii) chemical substitutability, (iii) chemical transportation, and (iv) chemical storage process. Expert elicitation was then conducted to formulate a Failure Modes and Effects Analysis (FMEA) and develop Radar Charts, regarding the operations and management of specific plants. These tools were then employed to develop a final risk mitigation plan comprising two parts: (i) a quantitative analysis comparing and contrasting the risks of the water treatment plants under study and (ii) a qualitative recommendation for each of the plants-both culminating in a mitigation model on how to control and monitor chemical-related risks.
Laouiti, Dhia Eddine, Ayaida, Marwane, Messai, Nadhir, Najeh, Sameh, Najjar, Leila, Chaabane, Ferdaous.  2022.  Sybil Attack Detection in VANETs using an AdaBoost Classifier. 2022 International Wireless Communications and Mobile Computing (IWCMC). :217–222.
Smart cities are a wide range of projects made to facilitate the problems of everyday life and ensure security. Our interest focuses only on the Intelligent Transport System (ITS) that takes care of the transportation issues using the Vehicular Ad-Hoc Network (VANET) paradigm as its base. VANETs are a promising technology for autonomous driving that provides many benefits to the user conveniences to improve road safety and driving comfort. VANET is a promising technology for autonomous driving that provides many benefits to the user's conveniences by improving road safety and driving comfort. The problem with such rapid development is the continuously increasing digital threats. Among all these threats, we will target the Sybil attack since it has been proved to be one of the most dangerous attacks in VANETs. It allows the attacker to generate multiple forged identities to disseminate numerous false messages, disrupt safety-related services, or misuse the systems. In addition, Machine Learning (ML) is showing a significant influence on classification problems, thus we propose a behavior-based classification algorithm that is tested on the provided VeReMi dataset coupled with various machine learning techniques for comparison. The simulation results prove the ability of our proposed mechanism to detect the Sybil attack in VANETs.
Sarwar, Asima, Hasan, Salva, Khan, Waseem Ullah, Ahmed, Salman, Marwat, Safdar Nawaz Khan.  2022.  Design of an Advance Intrusion Detection System for IoT Networks. 2022 2nd International Conference on Artificial Intelligence (ICAI). :46–51.
The Internet of Things (IoT) is advancing technology by creating smart surroundings that make it easier for humans to do their work. This technological advancement not only improves human life and expands economic opportunities, but also allows intruders or attackers to discover and exploit numerous methods in order to circumvent the security of IoT networks. Hence, security and privacy are the key concerns to the IoT networks. It is vital to protect computer and IoT networks from many sorts of anomalies and attacks. Traditional intrusion detection systems (IDS) collect and employ large amounts of data with irrelevant and inappropriate attributes to train machine learning models, resulting in long detection times and a high rate of misclassification. This research presents an advance approach for the design of IDS for IoT networks based on the Particle Swarm Optimization Algorithm (PSO) for feature selection and the Extreme Gradient Boosting (XGB) model for PSO fitness function. The classifier utilized in the intrusion detection process is Random Forest (RF). The IoTID20 is being utilized to evaluate the efficacy and robustness of our suggested strategy. The proposed system attains the following level of accuracy on the IoTID20 dataset for different levels of classification: Binary classification 98 %, multiclass classification 83 %. The results indicate that the proposed framework effectively detects cyber threats and improves the security of IoT networks.
Ma, Xiandong, Su, Zhou, Xu, Qichao, Ying, Bincheng.  2022.  Edge Computing and UAV Swarm Cooperative Task Offloading in Vehicular Networks. 2022 International Wireless Communications and Mobile Computing (IWCMC). :955–960.
Recently, unmanned aerial vehicle (UAV) swarm has been advocated to provide diverse data-centric services including data relay, content caching and computing task offloading in vehicular networks due to their flexibility and conveniences. Since only offloading computing tasks to edge computing devices (ECDs) can not meet the real-time demand of vehicles in peak traffic flow, this paper proposes to combine edge computing and UAV swarm for cooperative task offloading in vehicular networks. Specifically, we first design a cooperative task offloading framework that vehicles' computing tasks can be executed locally, offloaded to UAV swarm, or offloaded to ECDs. Then, the selection of offloading strategy is formulated as a mixed integer nonlinear programming problem, the object of which is to maximize the utility of the vehicle. To solve the problem, we further decompose the original problem into two subproblems: minimizing the completion time when offloading to UAV swarm and optimizing the computing resources when offloading to ECD. For offloading to UAV swarm, the computing task will be split into multiple subtasks that are offloaded to different UAVs simultaneously for parallel computing. A Q-learning based iterative algorithm is proposed to minimize the computing task's completion time by equalizing the completion time of its subtasks assigned to each UAV. For offloading to ECDs, a gradient descent algorithm is used to optimally allocate computing resources for offloaded tasks. Extensive simulations are lastly conducted to demonstrate that the proposed scheme can significantly improve the utility of vehicles compared with conventional schemes.
Ranganathan, Sathishkumar, Mariappan, Muralindran, Muthukaruppan, Karthigayan.  2022.  Efficient Distributed Consensus Algorithm For Swarm Robotic. 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET). :1–6.
Swarm robotics is a network based multi-device system designed to achieve shared objectives in a synchronized way. This system is widely used in industries like farming, manufacturing, and defense applications. In recent implementations, swarm robotics is integrated with Blockchain based networks to enhance communication, security, and decentralized decision-making capabilities. As most of the current blockchain applications are based on complex consensus algorithms, every individual robot in the swarm network requires high computing power to run these complex algorithms. Thus, it is a challenging task to achieve consensus between the robots in the network. This paper will discuss the details of designing an effective consensus algorithm that meets the requirements of swarm robotics network.
Jovanovic, Dijana, Marjanovic, Marina, Antonijevic, Milos, Zivkovic, Miodrag, Budimirovic, Nebojsa, Bacanin, Nebojsa.  2022.  Feature Selection by Improved Sand Cat Swarm Optimizer for Intrusion Detection. 2022 International Conference on Artificial Intelligence in Everything (AIE). :685–690.
The rapid growth of number of devices that are connected to internet of things (IoT) networks, increases the severity of security problems that need to be solved in order to provide safe environment for network data exchange. The discovery of new vulnerabilities is everyday challenge for security experts and many novel methods for detection and prevention of intrusions are being developed for dealing with this issue. To overcome these shortcomings, artificial intelligence (AI) can be used in development of advanced intrusion detection systems (IDS). This allows such system to adapt to emerging threats, react in real-time and adjust its behavior based on previous experiences. On the other hand, the traffic classification task becomes more difficult because of the large amount of data generated by network systems and high processing demands. For this reason, feature selection (FS) process is applied to reduce data complexity by removing less relevant data for the active classification task and therefore improving algorithm's accuracy. In this work, hybrid version of recently proposed sand cat swarm optimizer algorithm is proposed for feature selection with the goal of increasing performance of extreme learning machine classifier. The performance improvements are demonstrated by validating the proposed method on two well-known datasets - UNSW-NB15 and CICIDS-2017, and comparing the results with those reported for other cutting-edge algorithms that are dealing with the same problems and work in a similar configuration.
Miyamae, Takeshi, Nishimaki, Satoru, Nakamura, Makoto, Fukuoka, Takeru, Morinaga, Masanobu.  2022.  Advanced Ledger: Supply Chain Management with Contribution Trails and Fair Reward Distribution. 2022 IEEE International Conference on Blockchain (Blockchain). :435—442.
We have several issues in most current supply chain management systems. Consumers want to spend money on environmentally friendly products, but they are seldomly informed of the environmental contributions of the suppliers. Meanwhile, each supplier seeks to recover the costs for the environmental contributions to re-invest them into further contributions. Instead, in most current supply chains, the reward for each supplier is not clearly defined and fairly distributed. To address these issues, we propose a supply-chain contribution management platform for fair reward distribution called ‘Advanced Ledger.’ This platform records suppliers' environ-mental contribution trails, receives rewards from consumers in exchange for trail-backed fungible tokens, and fairly distributes the rewards to each supplier based on the contribution trails. In this paper, we overview the architecture of Advanced Ledger and 11 technical features, including decentralized autonomous organization (DAO) based contribution verification, contribution concealment, negative-valued tokens, fair reward distribution, atomic rewarding, and layer-2 rewarding. We then study the requirements and candidates of the smart contract platforms for implementing Advanced Ledger. Finally, we introduce a use case called ‘ESG token’ built on the Advanced Ledger architecture.
Gupta, Laveesh, Bansal, Manvendra, Meeradevi, Gupta, Muskan, Khaitan, Nishit.  2022.  Blockchain Based Solution to Enhance Drug Supply Chain Management for Smart Pharmaceutical Industry. 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-HTC). :330—335.
Counterfeit drugs are an immense threat for the pharmaceutical industry worldwide due to limitations of supply chain. Our proposed solution can overcome many challenges as it will trace and track the drugs while in transit, give transparency along with robust security and will ensure legitimacy across the supply chain. It provides a reliable certification process as well. Fabric architecture is permissioned and private. Hyperledger is a preferred framework over Ethereum because it makes use of features like modular design, high efficiency, quality code and open-source which makes it more suitable for B2B applications with no requirement of cryptocurrency in Hyperledger Fabric. QR generation and scanning are provided as a functionality in the application instead of bar code for its easy accessibility to make it more secure and reliable. The objective of our solution is to provide substantial solutions to the supply chain stakeholders in record maintenance, drug transit monitoring and vendor side verification.
Wagner, Eric, Matzutt, Roman, Pennekamp, Jan, Bader, Lennart, Bajelidze, Irakli, Wehrle, Klaus, Henze, Martin.  2022.  Scalable and Privacy-Focused Company-Centric Supply Chain Management. 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).
Blockchain technology promises to overcome trust and privacy concerns inherent to centralized information sharing. However, current decentralized supply chain management systems do either not meet privacy and scalability requirements or require a trustworthy consortium, which is challenging for increasingly dynamic supply chains with constantly changing participants. In this paper, we propose CCChain, a scalable and privacy-aware supply chain management system that stores all information locally to give companies complete sovereignty over who accesses their data. Still, tamper protection of all data through a permissionless blockchain enables on-demand tracking and tracing of products as well as reliable information sharing while affording the detection of data inconsistencies. Our evaluation confirms that CCChain offers superior scalability in comparison to alternatives while also enabling near real-time tracking and tracing for many, less complex products.
Mead, Nancy R..  2022.  Critical Infrastructure Protection and Supply Chain Risk Management. 2022 IEEE 30th International Requirements Engineering Conference Workshops (REW). :215—218.
Critical infrastructure is a key area in cybersecurity. In the U.S., it was front and center in 1997 with the report from the President’s Commission on Critical Infrastructure Protection (PCCIP), and now affects countries worldwide. Critical Infrastructure Protection must address all types of cybersecurity threats - insider threat, ransomware, supply chain risk management issues, and so on. Unsurprisingly, in the past 25 years, the risks and incidents have increased rather than decreased and appear in the news daily. As an important component of critical infrastructure protection, secure supply chain risk management must be integrated into development projects. Both areas have important implications for security requirements engineering.
Khodaskar, Manish, Medhane, Darshan, Ingle, Rajesh, Buchade, Amar, Khodaskar, Anuja.  2022.  Feature-based Intrusion Detection System with Support Vector Machine. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1—7.
Today billions of people are accessing the internet around the world. There is a need for new technology to provide security against malicious activities that can take preventive/ defensive actions against constantly evolving attacks. A new generation of technology that keeps an eye on such activities and responds intelligently to them is the intrusion detection system employing machine learning. It is difficult for traditional techniques to analyze network generated data due to nature, amount, and speed with which the data is generated. The evolution of advanced cyber threats makes it difficult for existing IDS to perform up to the mark. In addition, managing large volumes of data is beyond the capabilities of computer hardware and software. This data is not only vast in scope, but it is also moving quickly. The system architecture suggested in this study uses SVM to train the model and feature selection based on the information gain ratio measure ranking approach to boost the overall system's efficiency and increase the attack detection rate. This work also addresses the issue of false alarms and trying to reduce them. In the proposed framework, the UNSW-NB15 dataset is used. For analysis, the UNSW-NB15 and NSL-KDD datasets are used. Along with SVM, we have also trained various models using Naive Bayes, ANN, RF, etc. We have compared the result of various models. Also, we can extend these trained models to create an ensemble approach to improve the performance of IDS.
Kumar, Marri Ranjith, Malathi, K..  2022.  An Innovative Method in Improving the accuracy in Intrusion detection by comparing Random Forest over Support Vector Machine. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—6.
Improving the accuracy of intruders in innovative Intrusion detection by comparing Machine Learning classifiers such as Random Forest (RF) with Support Vector Machine (SVM). Two groups of supervised Machine Learning algorithms acquire perfection by looking at the Random Forest calculation (N=20) with the Support Vector Machine calculation (N=20)G power value is 0.8. Random Forest (99.3198%) has the highest accuracy than the SVM (9S.56l5%) and the independent T-test was carried out (=0.507) and shows that it is statistically insignificant (p \textgreater0.05) with a confidence value of 95% by comparing RF and SVM. Conclusion: The comparative examination displays that the Random Forest is more productive than the Support Vector Machine for identifying the intruders are significantly tested.
Ma, Shiming.  2022.  Research and Design of Network Information Security Attack and Defense Practical Training Platform based on ThinkPHP Framework. 2022 2nd Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS). :27—31.
To solve the current problem of scarce information security talents, this paper proposes to design a network information security attack and defense practical training platform based on ThinkPHP framework. It provides help for areas with limited resources and also offers a communication platform for the majority of information security enthusiasts and students. The platform is deployed using ThinkPHP, and in order to meet the personalized needs of the majority of users, support vector machine algorithms are added to the platform to provide a more convenient service for users.
2022-12-23
Montano, Isabel Herrera, de La Torre Díez, Isabel, Aranda, Jose Javier García, Diaz, Juan Ramos, Cardín, Sergio Molina, López, Juan José Guerrero.  2022.  Secure File Systems for the Development of a Data Leak Protection (DLP) Tool Against Internal Threats. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–7.
Data leakage by employees is a matter of concern for companies and organizations today. Previous studies have shown that existing Data Leakage Protection (DLP) systems on the market, the more secure they are, the more intrusive and tedious they are to work with. This paper proposes and assesses the implementation of four technologies that enable the development of secure file systems for insider threat-focused, low-intrusive and user-transparent DLP tools. Two of these technologies are configurable features of the Windows operating system (Minifilters and Server Message Block), the other two are virtual file systems (VFS) Dokan and WinFsp, which mirror the real file system (RFS) allowing it to incorporate security techniques. In the assessment of the technologies, it was found that the implementation of VFS was very efficient and simple. WinFsp and Dokan presented a performance of 51% and 20% respectively, with respect to the performance of the operations in the RFS. This result may seem relatively low, but it should be taken into account that the calculation includes read and write encryption and decryption operations as appropriate for each prototype. Server Message Block (SMB) presented a low performance (3%) so it is not considered viable for a solution like this, while Minifilters present the best performance but require high programming knowledge for its evolution. The prototype presented in this paper and its strategy provides an acceptable level of comfort for the user, and a high level of security.
ISSN: 2166-0727
Marková, Eva, Sokol, Pavol, Kováćová, Kristína.  2022.  Detection of relevant digital evidence in the forensic timelines. 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1–7.
Security incident handling and response are essen-tial parts of every organization's information and cyber security. Security incident handling consists of several phases, among which digital forensic analysis has an irreplaceable place. Due to particular digital evidence being recorded at a specific time, timelines play an essential role in analyzing this digital evidence. One of the vital tasks of the digital forensic investigator is finding relevant records in this timeline. This operation is performed manually in most cases. This paper focuses on the possibilities of automatically identifying digital evidence pertinent to the case and proposes a model that identifies this digital evidence. For this purpose, we focus on Windows operating system and the NTFS file system and use outlier detection (Local Outlier Factor method). Collected digital evidence is preprocessed, transformed to binary values, and aggregated by file system inodes and names. Subsequently, we identify digital records (file inodes, file names) relevant to the case. This paper analyzes the combinations of attributes, aggregation functions, local outlier factor parameters, and their impact on the resulting selection of relevant file inodes and file names.
2022-12-20
Cheng, Leixiao, Meng, Fei.  2022.  An Improvement on “CryptCloud$^\textrm+\$$: Secure and Expressive Data Access Control for Cloud Storage”. IEEE Transactions on Services Computing. :1–2.
Recently, Ning et al. proposed the “CryptCloud$^\textrm+\$$: Secure and Expressive Data Access Control for Cloud Storage” in IEEE Transaction on Services Computing. This work provided two versatile ciphertext-policy attribute-based encryption (CP-ABE) schemes to achieve flexible access control on encrypted data, namely ATER-CP-ABE and ATIR-CP-ABE, both of which have attractive advantages, such as white-box malicious user traceability, semi-honest authority accountability, public auditing and user revocation. However, we find a bug of access control in both schemes, i.e., a non-revoked user with attribute set \$S\$ can decrypt the ciphertext \$ct\$ encrypted under any access policy \$(A,\textbackslashrho )\$, regardless of whether \$S\$ satisfies \$(A,\textbackslashrho )\$ or not. This paper carefully analyzes the bug, and makes an improvement on Ning's pioneering work, so as to fix it.
Conference Name: IEEE Transactions on Services Computing
Speith, Julian, Schweins, Florian, Ender, Maik, Fyrbiak, Marc, May, Alexander, Paar, Christof.  2022.  How Not to Protect Your IP – An Industry-Wide Break of IEEE 1735 Implementations. 2022 IEEE Symposium on Security and Privacy (SP). :1656–1671.
Modern hardware systems are composed of a variety of third-party Intellectual Property (IP) cores to implement their overall functionality. Since hardware design is a globalized process involving various (untrusted) stakeholders, a secure management of the valuable IP between authors and users is inevitable to protect them from unauthorized access and modification. To this end, the widely adopted IEEE standard 1735-2014 was created to ensure confidentiality and integrity. In this paper, we outline structural weaknesses in IEEE 1735 that cannot be fixed with cryptographic solutions (given the contemporary hardware design process) and thus render the standard inherently insecure. We practically demonstrate the weaknesses by recovering the private keys of IEEE 1735 implementations from major Electronic Design Automation (EDA) tool vendors, namely Intel, Xilinx, Cadence, Siemens, Microsemi, and Lattice, while results on a seventh case study are withheld. As a consequence, we can decrypt, modify, and re-encrypt all allegedly protected IP cores designed for the respective tools, thus leading to an industry-wide break. As part of this analysis, we are the first to publicly disclose three RSA-based white-box schemes that are used in real-world products and present cryptanalytical attacks for all of them, finally resulting in key recovery.
Zhan, Yike, Zheng, Baolin, Wang, Qian, Mou, Ningping, Guo, Binqing, Li, Qi, Shen, Chao, Wang, Cong.  2022.  Towards Black-Box Adversarial Attacks on Interpretable Deep Learning Systems. 2022 IEEE International Conference on Multimedia and Expo (ICME). :1–6.
Recent works have empirically shown that neural network interpretability is susceptible to malicious manipulations. However, existing attacks against Interpretable Deep Learning Systems (IDLSes) all focus on the white-box setting, which is obviously unpractical in real-world scenarios. In this paper, we make the first attempt to attack IDLSes in the decision-based black-box setting. We propose a new framework called Dual Black-box Adversarial Attack (DBAA) which can generate adversarial examples that are misclassified as the target class, yet have very similar interpretations to their benign cases. We conduct comprehensive experiments on different combinations of classifiers and interpreters to illustrate the effectiveness of DBAA. Empirical results show that in all the cases, DBAA achieves high attack success rates and Intersection over Union (IoU) scores.
Miao, Weiwei, Jin, Chao, Zeng, Zeng, Bao, Zhejing, Wei, Xiaogang, Zhang, Rui.  2022.  A White-Box SM4 Implementation by Introducing Pseudo States Applied to Edge IoT Agents. 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES). :154–160.
With the widespread application of power Internet of Things (IoT), the edge IoT agents are often threatened by various attacks, among which the white-box attack is the most serious. The white-box implementation of the cryptography algorithm can hide key information even in the white-box attack context by means of obfuscation. However, under the specially designed attack, there is still a risk of the information being recovered within a certain time complexity. In this paper, by introducing pseudo states, a new white-box implementation of SM4 algorithm is proposed. The encryption and decryption processes are implemented in the form of matrices and lookup tables, which are obfuscated by scrambling encodings. The introduction of pseudo states could complicate the obfuscation, leading to the great improvement in the security. The number of pseudo states can be changed according to the requirements of security. Through several quantitative indicators, including diversity, ambiguity, the time complexity required to extract the key and the value space of the key and external encodings, it is proved that the security of the proposed implementation could been enhanced significantly, compared with the existing schemes under similar memory occupation.
Gracia, Mulumba Banza, Malele, Vusumuzi, Ndlovu, Sphiwe Promise, Mathonsi, Topside Ehleketani, Maaka, Lebogang, Muchenje, Tonderai.  2022.  6G Security Challenges and Opportunities. 2022 IEEE 13th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT). :339–343.
The Sixth Generation (6G) is currently under development and it is a planned successor of the Fifth Generation (5G). It is a new wireless communication technology expected to have a greater coverage area, significant fast and a higher data rate. The aim of this paper is to examine the literature on challenges and possible solutions of 6G's security, privacy and trust. It uses the systematic literature review technique by searching five research databases for search engines which are precise keywords like “6G,” “6G Wireless communication,” and “sixth generation”. The latter produced a total of 1856 papers, then the security, privacy and trust issues of the 6G wireless communication were extracted. Two security issues, the artificial intelligence and visible light communication, were apparent. In conclusion, there is a need for new paradigms that will provide a clear 6G security solutions.
Hussain, G K Jakir, Shruthe, M, Rithanyaa, S, Madasamy, Saravana Rajesh, Velu, Nandagopal S.  2022.  Visible Light Communication using Li-Fi. 2022 6th International Conference on Devices, Circuits and Systems (ICDCS). :257–262.
Over earlier years of huge technical developments, the need for a communication system has risen tremendously. Inrecent times, public realm interaction has been a popular area, hence the research group is emphasizing the necessity of quick and efficient broadband speeds, as well as upgraded security protocols. The main objective of this project work is to combine conventional Li-Fi and VLC techniques for video communication. VLC is helping to deliver fast data speeds, bandwidth efficiency, and a relatively secure channel of communication. Li-Fi is an inexpensive wireless communication (WC) system. Li-Fi can transmit information (text, audio, and video) to any electronic device via the LEDs that are positioned in the space to provide lighting. Li-Fi provides more advantages than Wi-Fi, such as security, high efficiency, speed, throughput, and low latency. The information can be transferred based on the flash property of the LED. Communication is accomplished by turning on and off LED lights at a faster pace than the human visual system can detect.
ISSN: 2644-1802
2022-12-09
Usman Rana, M., Elahi, O., Mushtaq, M., Ali Shah, M..  2022.  Identity based cryptography for ad hoc networks. Competitive Advantage in the Digital Economy (CADE 2022). 2022:93—98.
With the rapid growth of wireless communication, sensor technology, and mobile computing, the ad hoc network has gained increasing attention from governments, corporations, and scientific research organisations. Ad hoc and sensor network security has become crucial. Malicious node identification, network resilience and survival, and trust models are among the security challenges discussed. The security of ad hoc networks is a key problem. In this paper, we'll look at a few security procedures and approaches that can be useful in keeping this network secure. We've compiled a list of all the ad networks' descriptions with explanations. Before presenting our conclusions from the examination of the literature, we went through various papers on the issue. The taxonomy diagram for the Ad-hoc Decentralized Network is the next item on the agenda. Security is one of the most significant challenges with an ad hoc network. In most cases, cyber-attackers will be able to connect to a wireless ad hoc network and, as a result, to the device if they reach within signal range. So, we moved on to a discussion of VANET, UAVs security issues discovered in the field. The outcomes of various ad hoc network methods were then summarised in the form tables. Furthermore, the Diffie Hellman Key Exchange is used to investigate strategies for improving ad-hoc network security and privacy in the next section, and a comparison of RSA with Diffie Hellman is also illustrated. This paper can be used as a guide and reference to provide readers with a broad knowledge of wireless ad hoc networks and how to deal with their security issues.
M, Gayathri, Gomathy, C..  2022.  Fuzzy based Trusted Communication in Vehicular Ad hoc Network. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1—4.
Vehicular Ad hoc Network (VANET) is an emerging technology that is used to provide communication between vehicle users. VANET provides communication between one vehicle node to another vehicle node, vehicle to the roadside unit, vehicle to pedestrian, and even vehicle to rail users. Communication between nodes should be very secure and confidential, Since VANET communicates through wireless mode, a malicious node may enter inside the communication zone to hack, inject false messages, and interrupt the communication. A strong protocol is necessary to detect malicious nodes and authenticate the VANET user to protect them from malicious attacks. In this paper, a fuzzy-based trust authentication scheme is used to detect malicious nodes with the Mamdani fuzzy Inference system. The parameter estimation, rules have been framed using MATLAB Mamdani Fuzzy Inference system to select a genuine node for data transmission.
Moualla, Ghada, Bolle, Sebastien, Douet, Marc, Rutten, Eric.  2022.  Self-adaptive Device Management for the IoT Using Constraint Solving. 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS). :641—650.
In the context of IoT (Internet of Things), Device Management (DM), i.e., remote administration of IoT devices, becomes essential to keep them connected, updated and secure, thus increasing their lifespan through firmware and configuration updates and security patches. Legacy DM solutions are adequate when dealing with home devices (such as Television set-top boxes) but need to be extended to adapt to new IoT requirements. Indeed, their manual operation by system administrators requires advanced knowledge and skills. Further, the static DM platform — a component above IoT platforms that offers advanced features such as campaign updates / massive operation management — is unable to scale and adapt to IoT dynamicity. To cope with this, this work, performed in an industrial context at Orange, proposes a self-adaptive architecture with runtime horizontal scaling of DM servers, with an autonomic Auto-Scaling Manager, integrating in the loop constraint programming for decision-making, validated with a meaningful industrial use-case.