Visible to the public Biblio

Found 675 results

Filters: First Letter Of Last Name is O  [Clear All Filters]
2023-05-12
Desta, Araya Kibrom, Ohira, Shuji, Arai, Ismail, Fujikawa, Kazutoshi.  2022.  U-CAN: A Convolutional Neural Network Based Intrusion Detection for Controller Area Networks. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :1481–1488.
The Controller area network (CAN) is the most extensively used in-vehicle network. It is set to enable communication between a number of electronic control units (ECU) that are widely found in most modern vehicles. CAN is the de facto in-vehicle network standard due to its error avoidance techniques and similar features, but it is vulnerable to various attacks. In this research, we propose a CAN bus intrusion detection system (IDS) based on convolutional neural networks (CNN). U-CAN is a segmentation model that is trained by monitoring CAN traffic data that are preprocessed using hamming distance and saliency detection algorithm. The model is trained and tested using publicly available datasets of raw and reverse-engineered CAN frames. With an F\_1 Score of 0.997, U-CAN can detect DoS, Fuzzy, spoofing gear, and spoofing RPM attacks of the publicly available raw CAN frames. The model trained on reverse-engineered CAN signals that contain plateau attacks also results in a true positive rate and false-positive rate of 0.971 and 0.998, respectively.
ISSN: 0730-3157
Matsubayashi, Masaru, Koyama, Takuma, Tanaka, Masashi, Okano, Yasushi, Miyajima, Asami.  2022.  Message Source Identification in Controller Area Network by Utilizing Diagnostic Communications and an Intrusion Detection System. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). :1–6.
International regulations specified in WP.29 and international standards specified in ISO/SAE 21434 require security operations such as cyberattack detection and incident responses to protect vehicles from cyberattacks. To meet these requirements, many vehicle manufacturers are planning to install Intrusion Detection Systems (IDSs) in the Controller Area Network (CAN), which is a primary component of in-vehicle networks, in the coming years. Besides, many vehicle manufacturers and information security companies are developing technologies to identify attack paths related to IDS alerts to respond to cyberattacks appropriately and quickly. To develop the IDSs and the technologies to identify attack paths, it is essential to grasp normal communications performed on in-vehicle networks. Thus, our study aims to develop a technology that can easily grasp normal communications performed on in-vehicle networks. In this paper, we propose the first message source identification method that easily identifies CAN-IDs used by each Electronic Control Unit (ECU) connected to the CAN for message transmissions. We realize the proposed method by utilizing diagnostic communications and an IDS installed in the CAN (CAN-IDS). We evaluate the proposed method using an ECU installed in an actual vehicle and four kinds of simulated CAN-IDSs based on typical existing intrusion detection methods for the CAN. The evaluation results show that the proposed method can identify the CAN-ID used by the ECU for CAN message transmissions if a suitable simulated CAN-IDS for the proposed method is connected to the vehicle.
ISSN: 2577-2465
Borg, Markus, Bengtsson, Johan, Österling, Harald, Hagelborn, Alexander, Gagner, Isabella, Tomaszewski, Piotr.  2022.  Quality Assurance of Generative Dialog Models in an Evolving Conversational Agent Used for Swedish Language Practice. 2022 IEEE/ACM 1st International Conference on AI Engineering – Software Engineering for AI (CAIN). :22–32.
Due to the migration megatrend, efficient and effective second-language acquisition is vital. One proposed solution involves AI-enabled conversational agents for person-centered interactive language practice. We present results from ongoing action research targeting quality assurance of proprietary generative dialog models trained for virtual job interviews. The action team elicited a set of 38 requirements for which we designed corresponding automated test cases for 15 of particular interest to the evolving solution. Our results show that six of the test case designs can detect meaningful differences between candidate models. While quality assurance of natural language processing applications is complex, we provide initial steps toward an automated framework for machine learning model selection in the context of an evolving conversational agent. Future work will focus on model selection in an MLOps setting.
2023-04-28
Dutta, Ashutosh, Hammad, Eman, Enright, Michael, Behmann, Fawzi, Chorti, Arsenia, Cheema, Ahmad, Kadio, Kassi, Urbina-Pineda, Julia, Alam, Khaled, Limam, Ahmed et al..  2022.  Security and Privacy. 2022 IEEE Future Networks World Forum (FNWF). :1–71.
The digital transformation brought on by 5G is redefining current models of end-to-end (E2E) connectivity and service reliability to include security-by-design principles necessary to enable 5G to achieve its promise. 5G trustworthiness highlights the importance of embedding security capabilities from the very beginning while the 5G architecture is being defined and standardized. Security requirements need to overlay and permeate through the different layers of 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture within a risk-management framework that takes into account the evolving security-threats landscape. 5G presents a typical use-case of wireless communication and computer networking convergence, where 5G fundamental building blocks include components such as Software Defined Networks (SDN), Network Functions Virtualization (NFV) and the edge cloud. This convergence extends many of the security challenges and opportunities applicable to SDN/NFV and cloud to 5G networks. Thus, 5G security needs to consider additional security requirements (compared to previous generations) such as SDN controller security, hypervisor security, orchestrator security, cloud security, edge security, etc. At the same time, 5G networks offer security improvement opportunities that should be considered. Here, 5G architectural flexibility, programmability and complexity can be harnessed to improve resilience and reliability. The working group scope fundamentally addresses the following: •5G security considerations need to overlay and permeate through the different layers of the 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture including a risk management framework that takes into account the evolving security threats landscape. •5G exemplifies a use-case of heterogeneous access and computer networking convergence, which extends a unique set of security challenges and opportunities (e.g., related to SDN/NFV and edge cloud, etc.) to 5G networks. Similarly, 5G networks by design offer potential security benefits and opportunities through harnessing the architecture flexibility, programmability and complexity to improve its resilience and reliability. •The IEEE FNI security WG's roadmap framework follows a taxonomic structure, differentiating the 5G functional pillars and corresponding cybersecurity risks. As part of cross collaboration, the security working group will also look into the security issues associated with other roadmap working groups within the IEEE Future Network Initiative.
ISSN: 2770-7679
2023-04-14
Alcaraz-Velasco, Francisco, Palomares, José M., Olivares, Joaquín.  2022.  Analysis of the random shuffling of message blocks as a low-cost integrity and security measure. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
Recently, a mechanism that randomly shuffles the data sent and allows securing the communication without the need to encrypt all the information has been proposed. This proposal is ideal for IoT systems with low computational capacity. In this work, we analyze the strength of this proposal from a brute-force attack approach to obtain the original message without knowledge of the applied disordering. It is demonstrated that for a set of 10x10 16-bit data, the processing time and the required memory are unfeasible with current technology. Therefore, it is safe.
ISSN: 2166-0727
2023-03-31
Bauspieß, Pia, Olafsson, Jonas, Kolberg, Jascha, Drozdowski, Pawel, Rathgeb, Christian, Busch, Christoph.  2022.  Improved Homomorphically Encrypted Biometric Identification Using Coefficient Packing. 2022 International Workshop on Biometrics and Forensics (IWBF). :1–6.

Efficient large-scale biometric identification is a challenging open problem in biometrics today. Adding biometric information protection by cryptographic techniques increases the computational workload even further. Therefore, this paper proposes an efficient and improved use of coefficient packing for homomorphically protected biometric templates, allowing for the evaluation of multiple biometric comparisons at the cost of one. In combination with feature dimensionality reduction, the proposed technique facilitates a quadratic computational workload reduction for biometric identification, while long-term protection of the sensitive biometric data is maintained throughout the system. In previous works on using coefficient packing, only a linear speed-up was reported. In an experimental evaluation on a public face database, efficient identification in the encrypted domain is achieved on off-the-shelf hardware with no loss in recognition performance. In particular, the proposed improved use of coefficient packing allows for a computational workload reduction down to 1.6% of a conventional homomorphically protected identification system without improved packing.

2023-03-17
Bianco, Giulio Maria, Raso, Emanuele, Fiore, Luca, Riente, Alessia, Barba, Adina Bianca, Miozzi, Carolina, Bracciale, Lorenzo, Arduini, Fabiana, Loreti, Pierpaolo, Marrocco, Gaetano et al..  2022.  Towards a Hybrid UHF RFID and NFC Platform for the Security of Medical Data from a Point of Care. 2022 IEEE 12th International Conference on RFID Technology and Applications (RFID-TA). :142–145.
In recent years, body-worn RFID and NFC (near field communication) devices have become one of the principal technologies concurring to the rise of healthcare internet of thing (H-IoT) systems. Similarly, points of care (PoCs) moved increasingly closer to patients to reduce the costs while supporting precision medicine and improving chronic illness management, thanks to timely and frequent feedback from the patients themselves. A typical PoC involves medical sensing devices capable of sampling human health, personal equipment with communications and computing capabilities (smartphone or tablet) and a secure software environment for data transmission to medical centers. Hybrid platforms simultaneously employing NFC and ultra-high frequency (UHF) RFID could be successfully developed for the first sensing layer. An application example of the proposed hybrid system for the monitoring of acute myocardial infarction (AMI) survivors details how the combined use of NFC and UHF-RFID in the same PoC can support the multifaceted need of AMI survivors while protecting the sensitive data on the patient’s health.
Kim, Yujin, Liu, Zhan, Jiang, Hao, Ma, T.P., Zheng, Jun-Fei, Chen, Phil, Condo, Eric, Hendrix, Bryan, O'Neill, James A..  2022.  A Study on the Hf0.5Zr0.5O2 Ferroelectric Capacitors fabricated with Hf and Zr Chlorides. 2022 China Semiconductor Technology International Conference (CSTIC). :1–3.
Ferroelectric capacitor memory devices with carbon-free Hf0.5Zr0.5O2 (HZO) ferroelectric films are fabricated and characterized. The HZO ferroelectric films are deposited by ALD at temperatures from 225 to 300°C, with HfCl4 and ZrCl4 as the precursors. Residual chlorine from the precursors is measured and studied systematically with various process temperatures. 10nm HZO films with optimal ALD growth temperature at 275°C exhibit remanent polarization of 25µC/cm2 and cycle endurance of 5×1011. Results will be compared with those from HZO films deposited with carbon containing metal-organic precursors.
Ali, T., Olivo, R., Kerdilès, S., Lehninger, D., Lederer, M., Sourav, D., Royet, A-S., Sünbül, A., Prabhu, A., Kühnel, K. et al..  2022.  Study of Nanosecond Laser Annealing on Silicon Doped Hafnium Oxide Film Crystallization and Capacitor Reliability. 2022 IEEE International Memory Workshop (IMW). :1–4.
Study on the effect of nanosecond laser anneal (NLA) induced crystallization of ferroelectric (FE) Si-doped hafnium oxide (HSO) material is reported. The laser energy density (0.3 J/cm2 to 1.3 J/cm2) and pulse count (1.0 to 30) variations are explored as pathways for the HSO based metal-ferroelectric-metal (MFM) capacitors. The increase in energy density shows transition toward ferroelectric film crystallization monitored by the remanent polarization (2Pr) and coercive field (2Ec). The NLA conditions show maximum 2Pr (\$\textbackslashsim 24\textbackslash \textbackslashmu\textbackslashmathrmC/\textbackslashtextcmˆ2\$) comparable to the values obtained from reference rapid thermal processing (RTP). Reliability dependence in terms of fatigue (107 cycles) of MFMs on NLA versus RTP crystallization anneal is highlighted. The NLA based MFMs shows improved fatigue cycling at high fields for the low energy densities compared to an RTP anneal. The maximum fatigue cycles to breakdown shows a characteristic dependence on the laser energy density and pulse count. Leakage current and dielectric breakdown of NLA based MFMs at the transition of amorphous to crystalline film state is reported. The role of NLA based anneal on ferroelectric film crystallization and MFM stack reliability is reported in reference with conventional RTP based anneal.
ISSN: 2573-7503
Alam, Md Shah, Hossain, Sarkar Marshia, Oluoch, Jared, Kim, Junghwan.  2022.  A Novel Secure Physical Layer Key Generation Method in Connected and Autonomous Vehicles (CAVs). 2022 IEEE Conference on Communications and Network Security (CNS). :1–6.
A novel secure physical layer key generation method for Connected and Autonomous Vehicles (CAVs) against an attacker is proposed under fading and Additive White Gaussian Noise (AWGN). In the proposed method, a random sequence key is added to the demodulated sequence to generate a unique pre-shared key (PSK) to enhance security. Extensive computer simulation results proved that an attacker cannot extract the same legitimate PSK generated by the received vehicle even if identical fading and AWGN parameters are used both for the legitimate vehicle and attacker.
Colter, Jamison, Kinnison, Matthew, Henderson, Alex, Schlager, Stephen M., Bryan, Samuel, O’Grady, Katherine L., Abballe, Ashlie, Harbour, Steven.  2022.  Testing the Resiliency of Consumer Off-the-Shelf Drones to a Variety of Cyberattack Methods. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). :1–5.
An often overlooked but equally important aspect of unmanned aerial system (UAS) design is the security of their networking protocols and how they deal with cyberattacks. In this context, cyberattacks are malicious attempts to monitor or modify incoming and outgoing data from the system. These attacks could target anywhere in the system where a transfer of data occurs but are most common in the transfer of data between the control station and the UAS. A compromise in the networking system of a UAS could result in a variety of issues including increased network latency between the control station and the UAS, temporary loss of control over the UAS, or a complete loss of the UAS. A complete loss of the system could result in the UAS being disabled, crashing, or the attacker overtaking command and control of the platform, all of which would be done with little to no alert to the operator. Fortunately, the majority of higher-end, enterprise, and government UAS platforms are aware of these threats and take actions to mitigate them. However, as the consumer market continues to grow and prices continue to drop, network security may be overlooked or ignored in favor of producing the lowest cost product possible. Additionally, these commercial off-the-shelf UAS often use uniform, standardized frequency bands, autopilots, and security measures, meaning a cyberattack could be developed to affect a wide variety of models with minimal changes. This paper will focus on a low-cost educational-use UAS and test its resilience to a variety of cyberattack methods, including man-in-the-middle attacks, spoofing of data, and distributed denial-of-service attacks. Following this experiment will be a discussion of current cybersecurity practices for counteracting these attacks and how they can be applied onboard a UAS. Although in this case the cyberattacks were tested against a simpler platform, the methods discussed are applicable to any UAS platform attempting to defend against such cyberattack methods.
ISSN: 2155-7209
2023-03-06
Le, Trung-Nghia, Akihiro, Sugimoto, Ono, Shintaro, Kawasaki, Hiroshi.  2020.  Toward Interactive Self-Annotation For Video Object Bounding Box: Recurrent Self-Learning And Hierarchical Annotation Based Framework. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). :3220–3229.
Amount and variety of training data drastically affect the performance of CNNs. Thus, annotation methods are becoming more and more critical to collect data efficiently. In this paper, we propose a simple yet efficient Interactive Self-Annotation framework to cut down both time and human labor cost for video object bounding box annotation. Our method is based on recurrent self-supervised learning and consists of two processes: automatic process and interactive process, where the automatic process aims to build a supported detector to speed up the interactive process. In the Automatic Recurrent Annotation, we let an off-the-shelf detector watch unlabeled videos repeatedly to reinforce itself automatically. At each iteration, we utilize the trained model from the previous iteration to generate better pseudo ground-truth bounding boxes than those at the previous iteration, recurrently improving self-supervised training the detector. In the Interactive Recurrent Annotation, we tackle the human-in-the-loop annotation scenario where the detector receives feedback from the human annotator. To this end, we propose a novel Hierarchical Correction module, where the annotated frame-distance binarizedly decreases at each time step, to utilize the strength of CNN for neighbor frames. Experimental results on various video datasets demonstrate the advantages of the proposed framework in generating high-quality annotations while reducing annotation time and human labor costs.
ISSN: 2642-9381
2023-03-03
Mishra, Ruby, Okade, Manish, Mahapatra, Kamalakanta.  2022.  FPGA based High Throughput Substitution Box Architectures for Lightweight Block Ciphers. 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA). :1–7.
This paper explores high throughput architectures for the substitution modules, which are an integral component of encryption algorithms. The security algorithms chosen belong to the category of lightweight crypto-primitives suitable for pervasive computing. The focus of this work is on the implementation of encryption algorithms on hardware platforms to improve speed and facilitate optimization in the area and power consumption of the design. In this work, the architecture for the encryption algorithms' substitution box (S-box) is modified using switching circuits (i.e., MUX-based) along with a logic generator and included in the overall cipher design. The modified architectures exhibit high throughput and consume less energy in comparison to the state-of-the-art designs. The percentage increase in throughput or maximum frequency differs according to the chosen algorithms discussed elaborately in this paper. The evaluation of various metrics specific to the design are executed at RFID-specific frequency so that they can be deployed in an IoT environment. The designs are mainly simulated and compared on Nexys4 DDR FPGA platform, along with a few other FPGAs, to meet similar design and implementation environments for a fair comparison. The application of the proposed S-box modification is explored for the healthcare scenario with promising results.
2023-02-24
Figueira, Nina, Pochmann, Pablo, Oliveira, Abel, de Freitas, Edison Pignaton.  2022.  A C4ISR Application on the Swarm Drones Context in a Low Infrastructure Scenario. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1—7.
The military operations in low communications infrastructure scenarios employ flexible solutions to optimize the data processing cycle using situational awareness systems, guaranteeing interoperability and assisting in all processes of decision-making. This paper presents an architecture for the integration of Command, Control, Computing, Communication, Intelligence, Surveillance and Reconnaissance Systems (C4ISR), developed within the scope of the Brazilian Ministry of Defense, in the context of operations with Unmanned Aerial Vehicles (UAV) - swarm drones - and the Internet-to-the-battlefield (IoBT) concept. This solution comprises the following intelligent subsystems embedded in UAV: STFANET, an SDN-Based Topology Management for Flying Ad Hoc Network focusing drone swarms operations, developed by University of Rio Grande do Sul; Interoperability of Command and Control (INTERC2), an intelligent communication middleware developed by Brazilian Navy; A Mission-Oriented Sensors Array (MOSA), which provides the automatization of data acquisition, data fusion, and data sharing, developed by Brazilian Army; The In-Flight Awareness Augmentation System (IFA2S), which was developed to increase the safety navigation of Unmanned Aerial Vehicles (UAV), developed by Brazilian Air Force; Data Mining Techniques to optimize the MOSA with data patterns; and an adaptive-collaborative system, composed of a Software Defined Radio (SDR), to solve the identification of electromagnetic signals and a Geographical Information System (GIS) to organize the information processed. This research proposes, as a main contribution in this conceptual phase, an application that describes the premises for increasing the capacity of sensing threats in the low structured zones, such as the Amazon rainforest, using existing communications solutions of Brazilian defense monitoring systems.
2023-02-17
Mohammadi, Ali Akbar, Hussain, Rasheed, Oracevic, Alma, Kazmi, Syed Muhammad Ahsan Raza, Hussain, Fatima, Aloqaily, Moayad, Son, Junggab.  2022.  A Novel TCP/IP Header Hijacking Attack on SDN. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
Middlebox is primarily used in Software-Defined Network (SDN) to enhance operational performance, policy compliance, and security operations. Therefore, security of the middlebox itself is essential because incorrect use of the middlebox can cause severe cybersecurity problems for SDN. Existing attacks against middleboxes in SDN (for instance, middleboxbypass attack) use methods such as cloned tags from the previous packets to justify that the middlebox has processed the injected packet. Flowcloak as the latest solution to defeat such an attack creates a defence using a tag by computing the hash of certain parts of the packet header. However, the security mechanisms proposed to mitigate these attacks are compromise-able since all parts of the packet header can be imitated, leaving the middleboxes insecure. To demonstrate our claim, we introduce a novel attack against SDN middleboxes by hijacking TCP/IP headers. The attack uses crafted TCP/IP headers to receive the tags and signatures and successfully bypasses the middleboxes.
Yang, Jingcong, Xia, Qi, Gao, Jianbin, Obiri, Isaac Amankona, Sun, Yushan, Yang, Wenwu.  2022.  A Lightweight Scalable Blockchain Architecture for IoT Devices. 2022 IEEE 5th International Conference on Electronics Technology (ICET). :1014–1018.
With the development of Internet of Things (IoT) technology, the transaction behavior of IoT devices has gradually increased, which also brings the problem of transaction data security and transaction processing efficiency. As one of the research hotspots in the field of data security, blockchain technology has been widely applied in the maintenance of transaction records and the construction of financial payment systems. However, the proportion of microtransactions in the Internet of Things poses challenges to the coupling of blockchain and IoT devices. This paper proposes a three-party scalable architecture based on “IoT device-edge server-blockchain”. In view of the characteristics of micropayment, the verification mechanism of the execution results of the off-chain transaction is designed, and the bridge node is designed in the off-chain architecture, which ensures the finality of the blockchain to the transaction. According to system evaluation, this scalable architecture improves the processing efficiency of micropayments on blockchain, while ensuring its decentration equal to that of blockchain. Compared with other blockchain-based IoT device payment schemes, our architecture is more excellent in activity.
ISSN: 2768-6515
Alimi, Oyeniyi Akeem, Ouahada, Khmaies, Abu-Mahfouz, Adnan M., Rimer, Suvendi, Alimi, Kuburat Oyeranti Adefemi.  2022.  Supervised learning based intrusion detection for SCADA systems. 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON). :1–5.
Supervisory control and data acquisition (SCADA) systems play pivotal role in the operation of modern critical infrastructures (CIs). Technological advancements, innovations, economic trends, etc. have continued to improve SCADA systems effectiveness and overall CIs’ throughput. However, the trends have also continued to expose SCADA systems to security menaces. Intrusions and attacks on SCADA systems can cause service disruptions, equipment damage or/and even fatalities. The use of conventional intrusion detection models have shown trends of ineffectiveness due to the complexity and sophistication of modern day SCADA attacks and intrusions. Also, SCADA characteristics and requirement necessitate exceptional security considerations with regards to intrusive events’ mitigations. This paper explores the viability of supervised learning algorithms in detecting intrusions specific to SCADA systems and their communication protocols. Specifically, we examine four supervised learning algorithms: Random Forest, Naïve Bayes, J48 Decision Tree and Sequential Minimal Optimization-Support Vector Machines (SMO-SVM) for evaluating SCADA datasets. Two SCADA datasets were used for evaluating the performances of our approach. To improve the classification performances, feature selection using principal component analysis was used to preprocess the datasets. Using prominent classification metrics, the SVM-SMO presented the best overall results with regards to the two datasets. In summary, results showed that supervised learning algorithms were able to classify intrusions targeted against SCADA systems with satisfactory performances.
ISSN: 2377-2697
Ruaro, Nicola, Pagani, Fabio, Ortolani, Stefano, Kruegel, Christopher, Vigna, Giovanni.  2022.  SYMBEXCEL: Automated Analysis and Understanding of Malicious Excel 4.0 Macros. 2022 IEEE Symposium on Security and Privacy (SP). :1066–1081.
Malicious software (malware) poses a significant threat to the security of our networks and users. In the ever-evolving malware landscape, Excel 4.0 Office macros (XL4) have recently become an important attack vector. These macros are often hidden within apparently legitimate documents and under several layers of obfuscation. As such, they are difficult to analyze using static analysis techniques. Moreover, the analysis in a dynamic analysis environment (a sandbox) is challenging because the macros execute correctly only under specific environmental conditions that are not always easy to create. This paper presents SYMBEXCEL, a novel solution that leverages symbolic execution to deobfuscate and analyze Excel 4.0 macros automatically. Our approach proceeds in three stages: (1) The malicious document is parsed and loaded in memory; (2) Our symbolic execution engine executes the XL4 formulas; and (3) Our Engine concretizes any symbolic values encountered during the symbolic exploration, therefore evaluating the execution of each macro under a broad range of (meaningful) environment configurations. SYMBEXCEL significantly outperforms existing deobfuscation tools, allowing us to reliably extract Indicators of Compromise (IoCs) and other critical forensics information. Our experiments demonstrate the effectiveness of our approach, especially in deobfuscating novel malicious documents that make heavy use of environment variables and are often not identified by commercial anti-virus software.
ISSN: 2375-1207
Tilloo, Pallavi, Parron, Jesse, Obidat, Omar, Zhu, Michelle, Wang, Weitian.  2022.  A POMDP-based Robot-Human Trust Model for Human-Robot Collaboration. 2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). :1009–1014.
Trust is a cognitive ability that can be dependent on behavioral consistency. In this paper, a partially observable Markov Decision Process (POMDP)-based computational robot-human trust model is proposed for hand-over tasks in human-robot collaborative contexts. The robot's trust in its human partner is evaluated based on the human behavior estimates and object detection during the hand-over task. The human-robot hand-over process is parameterized as a partially observable Markov Decision Process. The proposed approach is verified in real-world human-robot collaborative tasks. Results show that our approach can be successfully applied to human-robot hand-over tasks to achieve high efficiency, reduce redundant robot movements, and realize predictability and mutual understanding of the task.
ISSN: 2642-6633
2023-02-03
Suzumura, Toyotaro, Sugiki, Akiyoshi, Takizawa, Hiroyuki, Imakura, Akira, Nakamura, Hiroshi, Taura, Kenjiro, Kudoh, Tomohiro, Hanawa, Toshihiro, Sekiya, Yuji, Kobayashi, Hiroki et al..  2022.  mdx: A Cloud Platform for Supporting Data Science and Cross-Disciplinary Research Collaborations. 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :1–7.
The growing amount of data and advances in data science have created a need for a new kind of cloud platform that provides users with flexibility, strong security, and the ability to couple with supercomputers and edge devices through high-performance networks. We have built such a nation-wide cloud platform, called "mdx" to meet this need. The mdx platform's virtualization service, jointly operated by 9 national universities and 2 national research institutes in Japan, launched in 2021, and more features are in development. Currently mdx is used by researchers in a wide variety of domains, including materials informatics, geo-spatial information science, life science, astronomical science, economics, social science, and computer science. This paper provides an overview of the mdx platform, details the motivation for its development, reports its current status, and outlines its future plans.
Oldal, Laura Gulyás, Kertész, Gábor.  2022.  Evaluation of Deep Learning-based Authorship Attribution Methods on Hungarian Texts. 2022 IEEE 10th Jubilee International Conference on Computational Cybernetics and Cyber-Medical Systems (ICCC). :000161–000166.
The range of text analysis methods in the field of natural language processing (NLP) has become more and more extensive thanks to the increasing computational resources of the 21st century. As a result, many deep learning-based solutions have been proposed for the purpose of authorship attribution, as they offer more flexibility and automated feature extraction compared to traditional statistical methods. A number of solutions have appeared for the attribution of English texts, however, the number of methods designed for Hungarian language is extremely small. Hungarian is a morphologically rich language, sentence formation is flexible and the alphabet is different from other languages. Furthermore, a language specific POS tagger, pretrained word embeddings, dependency parser, etc. are required. As a result, methods designed for other languages cannot be directly applied on Hungarian texts. In this paper, we review deep learning-based authorship attribution methods for English texts and offer techniques for the adaptation of these solutions to Hungarian language. As a part of the paper, we collected a new dataset consisting of Hungarian literary works of 15 authors. In addition, we extensively evaluate the implemented methods on the new dataset.
Ouamour, S., Sayoud, H..  2022.  Computational Identification of Author Style on Electronic Libraries - Case of Lexical Features. 2022 5th International Symposium on Informatics and its Applications (ISIA). :1–4.
In the present work, we intend to present a thorough study developed on a digital library, called HAT corpus, for a purpose of authorship attribution. Thus, a dataset of 300 documents that are written by 100 different authors, was extracted from the web digital library and processed for a task of author style analysis. All the documents are related to the travel topic and written in Arabic. Basically, three important rules in stylometry should be respected: the minimum document size, the same topic for all documents and the same genre too. In this work, we made a particular effort to respect those conditions seriously during the corpus preparation. That is, three lexical features: Fixed-length words, Rare words and Suffixes are used and evaluated by using a centroid based Manhattan distance. The used identification approach shows interesting results with an accuracy of about 0.94.
2023-02-02
Oakley, Lisa, Oprea, Alina, Tripakis, Stavros.  2022.  Adversarial Robustness Verification and Attack Synthesis in Stochastic Systems. 2022 IEEE 35th Computer Security Foundations Symposium (CSF). :380–395.

Probabilistic model checking is a useful technique for specifying and verifying properties of stochastic systems including randomized protocols and reinforcement learning models. However, these methods rely on the assumed structure and probabilities of certain system transitions. These assumptions may be incorrect, and may even be violated by an adversary who gains control of some system components. In this paper, we develop a formal framework for adversarial robustness in systems modeled as discrete time Markov chains (DTMCs). We base our framework on existing methods for verifying probabilistic temporal logic properties and extend it to include deterministic, memoryless policies acting in Markov decision processes (MDPs). Our framework includes a flexible approach for specifying structure-preserving and non structure-preserving adversarial models. We outline a class of threat models under which adversaries can perturb system transitions, constrained by an ε ball around the original transition probabilities. We define three main DTMC adversarial robustness problems: adversarial robustness verification, maximal δ synthesis, and worst case attack synthesis. We present two optimization-based solutions to these three problems, leveraging traditional and parametric probabilistic model checking techniques. We then evaluate our solutions on two stochastic protocols and a collection of Grid World case studies, which model an agent acting in an environment described as an MDP. We find that the parametric solution results in fast computation for small parameter spaces. In the case of less restrictive (stronger) adversaries, the number of parameters increases, and directly computing property satisfaction probabilities is more scalable. We demonstrate the usefulness of our definitions and solutions by comparing system outcomes over various properties, threat models, and case studies.

Odermatt, Martin, Marcilio, Diego, Furia, Carlo A..  2022.  Static Analysis Warnings and Automatic Fixing: A Replication for C\# Projects. 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :805–816.

Static analyzers have become increasingly popular both as developer tools and as subjects of empirical studies. Whereas static analysis tools exist for disparate programming languages, the bulk of the empirical research has focused on the popular Java programming language. In this paper, we investigate to what extent some known results about using static analyzers for Java change when considering C\#-another popular object-oriented language. To this end, we combine two replications of previous Java studies. First, we study which static analysis tools are most widely used among C\# developers, and which warnings are more commonly reported by these tools on open-source C\# projects. Second, we develop and empirically evaluate EagleRepair: a technique to automatically fix code in response to static analysis warnings; this is a replication of our previous work for Java [20]. Our replication indicates, among other things, that 1) static code analysis is fairly popular among C\# developers too; 2) Re-Sharper is the most widely used static analyzer for C\#; 3) several static analysis rules are commonly violated in both Java and C\# projects; 4) automatically generating fixes to static code analysis warnings with good precision is feasible in C\#. The EagleRepair tool developed for this research is available as open source.

2023-01-20
Chinthavali, Supriya, Hasan, S.M.Shamimul, Yoginath, Srikanth, Xu, Haowen, Nugent, Phil, Jones, Terry, Engebretsen, Cozmo, Olatt, Joseph, Tansakul, Varisara, Christopher, Carter et al..  2022.  An Alternative Timing and Synchronization Approach for Situational Awareness and Predictive Analytics. 2022 IEEE 23rd International Conference on Information Reuse and Integration for Data Science (IRI). :172–177.

Accurate and synchronized timing information is required by power system operators for controlling the grid infrastructure (relays, Phasor Measurement Units (PMUs), etc.) and determining asset positions. Satellite-based global positioning system (GPS) is the primary source of timing information. However, GPS disruptions today (both intentional and unintentional) can significantly compromise the reliability and security of our electric grids. A robust alternate source for accurate timing is critical to serve both as a deterrent against malicious attacks and as a redundant system in enhancing the resilience against extreme events that could disrupt the GPS network. To achieve this, we rely on the highly accurate, terrestrial atomic clock-based network for alternative timing and synchronization. In this paper, we discuss an experimental setup for an alternative timing approach. The data obtained from this experimental setup is continuously monitored and analyzed using various time deviation metrics. We also use these metrics to compute deviations of our clock with respect to the National Institute of Standards and Technologys (NIST) GPS data. The results obtained from these metric computations are elaborately discussed. Finally, we discuss the integration of the procedures involved, like real-time data ingestion, metric computation, and result visualization, in a novel microservices-based architecture for situational awareness.