Visible to the public Biblio

Found 5182 results

Filters: First Letter Of Last Name is S  [Clear All Filters]
2022-08-26
Shipley, G. A., Awe, T. J., Jennings, C. A., Hutsel, B. T..  2021.  Three-Dimensional Magnetohydrodynamic Modeling of Auto-Magnetizing Liner Implosions. 2021 IEEE International Conference on Plasma Science (ICOPS). :1—1.
Auto-magnetizing (AutoMag) liners 1 have demonstrated strong precompressed axial magnetic field production (\textbackslashtextgreater100 T) and remarkable cylindrical implosion uniformity during experiments 2 on the Z accelerator. However, both axial field production and implosion uniformity require further optimization to support use of AutoMag targets in magnetized liner inertial fusion (MagLIF) experiments. Recent experimental study on the Mykonos accelerator has provided data on the initiation and evolution of dielectric flashover in AutoMag targets; these results have directly enabled advancement of magnetohydrodynamic (MHD) modeling protocols used to simulate AutoMag liner implosions. Using these modeling protocols, we executed three-dimensional MHD simulations focused on improving AutoMag target designs, specifically seeking to optimize axial magnetic field production and enhance cylindrical implosion uniformity for MagLIF. By eliminating the previously used driver current prepulse and reducing the helical gap widths in AutoMag liners, simulations indicate that the optimal 30-50 T range of precompressed axial magnetic field for MagLIF can be accomplished concurrently with improved cylindrical implosion uniformity, thereby enabling an optimally premagnetized magneto-inertial fusion implosion with high cylindrical uniformity.
Gomez, Matthew R., Myers, C.E., Hatch, M.W., Hutsel, B.T., Jennings, C.A., Lamppa, D.C., Lowinske, M.C., Maurer, A.J., Steiner, A.M., Tomlinson, K. et al..  2021.  Developing An Extended Convolute Post To Drive An X-Pinch For Radiography At The Z Facility. 2021 IEEE International Conference on Plasma Science (ICOPS). :1—1.
X-ray radiography has been used to diagnose a wide variety of experiments at the Z facility including inertial confinement fusion capsule implosions, the growth of the magneto-Rayleigh-Taylor instability in solid liners, and the development of helical structures in axially magnetized liner implosions. In these experiments, the Z Beamlet laser (1 kJ, 1 ns) was used to generate the x-ray source. An alternate x-ray source is desirable in experiments where the Z Beamlet laser is used for another purpose (e.g., preheating the fuel in magnetized liner inertial fusion experiments) or when multiple radiographic lines of sight are necessary.
Pande, Prateek, Mallaiah, Kurra, Gandhi, Rishi Kumar, Medatiya, Amit Kumar, Srinivasachary, S.  2021.  Fine Grained Confinement of Untrusted Third-Party Applications in Android. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :372—376.
Third party mobile applications are dominating the business strategies of organisations and have become an integral part of personal life of individuals. These applications are used for financial transactions, sharing of sensitive data etc. The recent breaches in Android clearly indicate that use of third party applications have become a serious security threat. By design, Android framework keeps all these applications in untrusted domain. Due to this a common policy of resource control exists for all such applications. Further, user discretion in granting permissions to specific applications is not effective because users are not always aware of deep functionalities, mala fide intentions (in case of spywares) and bugs/flaws in these third-party applications. In this regard, we propose a security scheme to mitigate unauthorised access of resources by third party applications. Our proposed scheme is based on SEAndroid policies and achieves fine grained confinement with respect to access control for the third party applications. To the best of our knowledge, the proposed scheme is unique and first of its kind. The proposed scheme is integrated with Android Oreo 8.1.0 for performance and security analysis. It is compatible with any Android device with AOSP support.
Lewis, William E., Knapp, Patrick F., Slutz, Stephen A., Schmit, Paul F., Chandler, Gordon A., Gomez, Matthew R., Harvey-Thompson, Adam J., Mangan, Michael A., Ampleford, David J., Beckwith, Kristian.  2021.  Deep Learning Enabled Assessment of Magnetic Confinement in Magnetized Liner Inertial Fusion. 2021 IEEE International Conference on Plasma Science (ICOPS). :1—1.
Magnetized Liner Inertial Fusion (MagLIF) is a magneto-inertial fusion (MIF) concept being studied on the Z-machine at Sandia National Laboratories. MagLIF relies on quasi-adiabatic heating of a gaseous deuterium (DD) fuel and flux compression of a background axially oriented magnetic field to achieve fusion relevant plasma conditions. The magnetic flux per fuel radial extent determines the confinement of charged fusion products and is thus of fundamental interest in understanding MagLIF performance. It was recently shown that secondary DT neutron spectra and yields are sensitive to the magnetic field conditions within the fuel, and thus provide a means by which to characterize the magnetic confinement properties of the fuel. 1 , 2 , 3 We utilize an artificial neural network to surrogate the physics model of Refs. [1] , [2] , enabling Bayesian inference of the magnetic confinement parameter for a series of MagLIF experiments that systematically vary the laser preheat energy deposited in the target. This constitutes the first ever systematic experimental study of the magnetic confinement properties as a function of fundamental inputs on any neutron-producing MIF platform. We demonstrate that the fuel magnetization decreases with deposited preheat energy in a fashion consistent with Nernst advection of the magnetic field out of the hot fuel and diffusion into the target liner.
Liu, Tianyu, Di, Boya, Wang, Shupeng, Song, Lingyang.  2021.  A Privacy-Preserving Incentive Mechanism for Federated Cloud-Edge Learning. 2021 IEEE Global Communications Conference (GLOBECOM). :1—6.
The federated learning scheme enhances the privacy preservation through avoiding the private data uploading in cloud-edge computing. However, the attacks against the uploaded model updates still cause private data leakage which demotivates the privacy-sensitive participating edge devices. Facing this issue, we aim to design a privacy-preserving incentive mechanism for the federated cloud-edge learning (PFCEL) system such that 1) the edge devices are motivated to actively contribute to the updated model uploading, 2) a trade-off between the private data leakage and the model accuracy is achieved. We formulate the incentive design problem as a three-layer Stackelberg game, where the server-device interaction is further formulated as a contract design problem. Extensive numerical evaluations demonstrate the effectiveness of our designed mechanism in terms of privacy preservation and system utility.
Sun, Zice, Wang, Yingjie, Tong, Xiangrong, Pan, Qingxian, Liu, Wenyi, Zhang, Jiqiu.  2021.  Service Quality Loss-aware Privacy Protection Mechanism in Edge-Cloud IoTs. 2021 13th International Conference on Advanced Computational Intelligence (ICACI). :207—214.
With the continuous development of edge computing, the application scope of mobile crowdsourcing (MCS) is constantly increasing. The distributed nature of edge computing can transmit data at the edge of processing to meet the needs of low latency. The trustworthiness of the third-party platform will affect the level of privacy protection, because managers of the platform may disclose the information of workers. Anonymous servers also belong to third-party platforms. For unreal third-party platforms, this paper recommends that workers first use the localized differential privacy mechanism to interfere with the real location information, and then upload it to an anonymous server to request services, called the localized differential anonymous privacy protection mechanism (LDNP). The two privacy protection mechanisms further enhance privacy protection, but exacerbate the loss of service quality. Therefore, this paper proposes to give corresponding compensation based on the authenticity of the location information uploaded by workers, so as to encourage more workers to upload real location information. Through comparative experiments on real data, the LDNP algorithm not only protects the location privacy of workers, but also maintains the availability of data. The simulation experiment verifies the effectiveness of the incentive mechanism.
Chowdhury, Sayak Ray, Zhou, Xingyu, Shroff, Ness.  2021.  Adaptive Control of Differentially Private Linear Quadratic Systems. 2021 IEEE International Symposium on Information Theory (ISIT). :485—490.
In this paper we study the problem of regret minimization in reinforcement learning (RL) under differential privacy constraints. This work is motivated by the wide range of RL applications for providing personalized service, where privacy concerns are becoming paramount. In contrast to previous works, we take the first step towards non-tabular RL settings, while providing a rigorous privacy guarantee. In particular, we consider the adaptive control of differentially private linear quadratic (LQ) systems. We develop the first private RL algorithm, Private-OFU-RL which is able to attain a sub-linear regret while guaranteeing privacy protection. More importantly, the additional cost due to privacy is only on the order of \$\textbackslashtextbackslashfrac\textbackslashtextbackslashln(1/\textbackslashtextbackslashdelta)ˆ1/4\textbackslashtextbackslashvarepsilonˆ1/2\$ given privacy parameters \$\textbackslashtextbackslashvarepsilon, \textbackslashtextbackslashdelta \textbackslashtextgreater 0\$. Through this process, we also provide a general procedure for adaptive control of LQ systems under changing regularizers, which not only generalizes previous non-private controls, but also serves as the basis for general private controls.
Gajanur, Nanditha, Greidanus, Mateo, Seo, Gab-Su, Mazumder, Sudip K., Ali Abbaszada, Mohammad.  2021.  Impact of Blockchain Delay on Grid-Tied Solar Inverter Performance. 2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). :1—7.
This paper investigates the impact of the delay resulting from a blockchain, a promising security measure, for a hierarchical control system of inverters connected to the grid. The blockchain communication network is designed at the secondary control layer for resilience against cyberattacks. To represent the latency in the communication channel, a model is developed based on the complexity of the blockchain framework. Taking this model into account, this work evaluates the plant’s performance subject to communication delays, introduced by the blockchain, among the hierarchical control agents. In addition, this article considers an optimal model-based control strategy that performs the system’s internal control loop. The work shows that the blockchain’s delay size influences the convergence of the power supplied by the inverter to the reference at the point of common coupling. In the results section, real-time simulations on OPAL-RT are performed to test the resilience of two parallel inverters with increasing blockchain complexity.
Zhao, Yue, Shen, Yang, Qi, Yuanbo.  2021.  A Security Analysis of Chinese Robot Supply Chain Based on Open-Source Intelligence. 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). :219—222.

This paper argues that the security management of the robot supply chain would preferably focus on Sino-US relations and technical bottlenecks based on a comprehensive security analysis through open-source intelligence and data mining of associated discourses. Through the lens of the newsboy model and game theory, this study reconstructs the risk appraisal model of the robot supply chain and rebalances the process of the Sino-US competition game, leading to the prediction of China's strategic movements under the supply risks. Ultimately, this paper offers a threefold suggestion: increasing the overall revenue through cost control and scaled expansion, resilience enhancement and risk prevention, and outreach of a third party's cooperation for confrontation capabilities reinforcement.

Chinnasamy, P., Vinothini, B., Praveena, V., Subaira, A.S., Ben Sujitha, B..  2021.  Providing Resilience on Cloud Computing. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—4.
In Cloud Computing, a wide range of virtual platforms are integrated and offer users a flexible pay-as-you-need service. Compared to conventional computing systems, the provision of an acceptable degree of resilience to cloud services is a daunting challenge due to the complexities of the cloud environment and the need for efficient technology that could sustain cloud advantages over other technologies. For a cloud guest resilience service solution, we provide architectural design, installation specifics, and performance outcomes throughout this article. Virtual Machine Manager (VMM) enables execution statistical test of the virtual machine states to be monitored and avoids to reach faulty states.
Sahoo, Siva Satyendra, Kumar, Akash, Decky, Martin, Wong, Samuel C.B., Merrett, Geoff V., Zhao, Yinyuan, Wang, Jiachen, Wang, Xiaohang, Singh, Amit Kumar.  2021.  Emergent Design Challenges for Embedded Systems and Paths Forward: Mixed-criticality, Energy, Reliability and Security Perspectives: Special Session Paper. 2021 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). :1–10.
Modern embedded systems need to cater for several needs depending upon the application domain in which they are deployed. For example, mixed-critically needs to be considered for real-time and safety-critical systems and energy for battery-operated systems. At the same time, many of these systems demand for their reliability and security as well. With electronic systems being used for increasingly varying type of applications, novel challenges have emerged. For example, with the use of embedded systems in increasingly complex applications that execute tasks with varying priorities, mixed-criticality systems present unique challenges to designing reliable systems. The large design space involved in implementing cross-layer reliability in heterogeneous systems, particularly for mixed-critical systems, poses new research problems. Further, malicious security attacks on these systems pose additional extraordinary challenges in the system design. In this paper, we cover both the industry and academia perspectives of the challenges posed by these emergent aspects of system design towards designing highperformance, energy-efficient, reliable and/or secure embedded systems. We also provide our views on paths forward.
Spyros, Chatzivasileiadis.  2020.  From Decision Trees and Neural Networks to MILP: Power System Optimization Considering Dynamic Stability Constraints. 2020 European Control Conference (ECC). :594–594.
This work introduces methods that unlock a series of applications for decision trees and neural networks in power system optimization. Capturing constraints that were impossible to capture before in a scalable way, we use decision trees (or neural networks) to extract an accurate representation of the non-convex feasible region which is characterized by both algebraic and differential equations. Applying an exact transformation, we convert the information encoded in the decision trees and the neural networks to linear decision rules that we incorporate as conditional constraints in an optimization problem (MILP or MISOCP). Our approach introduces a framework to unify security considerations with electricity market operations, capturing not only steady-state but also dynamic stability constraints in power system optimization, and has the potential to eliminate redispatching costs, leading to savings of millions of euros per year.
Zhang, Yuchen, Dong, Zhao Yang, Xu, Yan, Su, Xiangjing, Fu, Yang.  2020.  Impact Analysis of Intra-Interval Variation on Dynamic Security Assessment of Wind-Energy Power Systems. 2020 IEEE Power & Energy Society General Meeting (PESGM). :1–5.
Dynamic security assessment (DSA) is to ensure the power system being operated under a secure condition that can withstand potential contingencies. DSA normally proceeds periodically on a 5 to 15 minutes basis, where the system security condition over a complete time interval is merely determined upon the system snapshot captured at the beginning of the interval. With high wind power penetration, the minute-to-minute variations of wind power can lead to more volatile power system states within a single DSA time interval. This paper investigates the intra-interval variation (IIV) phenomenon in power system online DSA and analyze whether the IIV problem is deserved attention in future DSA research and applications. An IIV-contaminated testing environment based on hierarchical Monte-Carlo simulation is developed to evaluate the practical IIV impacts on power system security and DSA performance. The testing results show increase in system insecurity risk and significant degradation in DSA accuracy in presence of IIV. This result draws attention to the IIV phenomenon in DSA of wind-energy power systems and calls for more robust DSA approach to mitigate the IIV impacts.
Mamushiane, Lusani, Shozi, Themba.  2021.  A QoS-based Evaluation of SDN Controllers: ONOS and OpenDayLight. 2021 IST-Africa Conference (IST-Africa). :1–10.
SDN marks a paradigm shift towards an externalized and logically centralized controller, unlike the legacy networks where control and data planes are tightly coupled. The controller has a comprehensive view of the network, offering flexibility to enforce new traffic engineering policies and easing automation. In SDN, a high performance controller is required for efficient traffic management. In this paper, we conduct a performance evaluation of two distributed SDN controllers, namely ONOS and OpenDayLight. Specifically, we use the Mininet emulation environment to emulate different topologies and the D-ITG traffic generator to evaluate aforementioned controllers based on metrics such as delay, jitter and packet loss. The experimental results show that ONOS provides a significantly higher latency, jitter and low packet loss than OpenDayLight in all topologies. We attribute the poor performance of OpenDayLight to its excessive CPU utilization and propose the use of Hyper-threading to improve its performance. This work provides practitioners in the telecoms industry with guidelines towards making informed controller selection decisions
U, Shriya, S, Veena H.  2021.  Increasing Grid Power Transmission Using PV-STATCOM. 2021 6th International Conference for Convergence in Technology (I2CT). :1–5.
Renewable energy resource plays an important role due to increasing energy claim. Power generation by PV technology is one of the fastest growing renewable energy sources due to its clean, economical and sustainable property. Grid integrated PV systems plays an important role in power generation sector. As the energy demand is increasing day by day, the power transfer capability of transmission line is increasing which leads various problems like stability, increase in fault current, congestion etc. To overcome the problem, we can use either FACTS device or battery storage or construct additional lines which is cost effective. This paper deals with grid connected PV system, which functions as PV-STATCOM. Voltage and damping control are used to elevate the power transfer capacity and to achieve regulated voltage within the limits at the point of common coupling (PCC). The studies are performed on SMIB and the simulation is carried out in MATLAB/SIMULINK environment.
Mao, Zeyu, Sahu, Abhijeet, Wlazlo, Patrick, Liu, Yijing, Goulart, Ana, Davis, Katherine, Overbye, Thomas J..  2021.  Mitigating TCP Congestion: A Coordinated Cyber and Physical Approach. 2021 North American Power Symposium (NAPS). :1–6.
The operation of the modern power grid is becoming increasingly reliant on its underlying communication network, especially within the context of the rapidly growing integration of Distributed Energy Resources (DERs). This tight cyber-physical coupling brings uncertainties and challenges for the power grid operation and control. To help operators manage the complex cyber-physical environment, ensure the integrity, and continuity of reliable grid operation, a two-stage approach is proposed that is compatible with current ICS protocols to improve the deliverability of time critical operations. With the proposed framework, the impact Denial of Service (DoS) attack can have on a Transmission Control Protocol (TCP) session could be effectively prevented and mitigated. This coordinated approach combines the efficiency of congestion window reconfiguration and the applicability of physical-only mitigation approaches. By expanding the state and action space to encompass both the cyber and physical domains. This approach has been proven to outperform the traditional, physical-only method, in multiple network congested scenarios that were emulated in a real-time cyber-physical testbed.
Christopherjames, Jim Elliot, Saravanan, Mahima, Thiyam, Deepa Beeta, S, Prasath Alias Surendhar, Sahib, Mohammed Yashik Basheer, Ganapathi, Manju Varrshaa, Milton, Anisha.  2021.  Natural Language Processing based Human Assistive Health Conversational Agent for Multi-Users. 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC). :1414–1420.
Background: Most of the people are not medically qualified for studying or understanding the extremity of their diseases or symptoms. This is the place where natural language processing plays a vital role in healthcare. These chatbots collect patients' health data and depending on the data, these chatbot give more relevant data to patients regarding their body conditions and recommending further steps also. Purposes: In the medical field, AI powered healthcare chatbots are beneficial for assisting patients and guiding them in getting the most relevant assistance. Chatbots are more useful for online search that users or patients go through when patients want to know for their health symptoms. Methods: In this study, the health assistant system was developed using Dialogflow application programming interface (API) which is a Google's Natural language processing powered algorithm and the same is deployed on google assistant, telegram, slack, Facebook messenger, and website and mobile app. With this web application, a user can make health requests/queries via text message and might also get relevant health suggestions/recommendations through it. Results: This chatbot acts like an informative and conversational chatbot. This chatbot provides medical knowledge such as disease symptoms and treatments. Storing patients personal and medical information in a database for further analysis of the patients and patients get real time suggestions from doctors. Conclusion: In the healthcare sector AI-powered applications have seen a remarkable spike in recent days. This covid crisis changed the whole healthcare system upside down. So this NLP powered chatbot system reduced office waiting, saving money, time and energy. Patients might be getting medical knowledge and assisting ourselves within their own time and place.
Rajan, Mohammad Hasnain, Rebello, Keith, Sood, Yajur, Wankhade, Sunil B..  2021.  Graph-Based Transfer Learning for Conversational Agents. 2021 6th International Conference on Communication and Electronics Systems (ICCES). :1335–1341.
Graphs have proved to be a promising data structure to solve complex problems in various domains. Graphs store data in an associative manner which is analogous to the manner in which humans store memories in the brain. Generathe chatbots lack the ability to recall details revealed by the user in long conversations. To solve this problem, we have used graph-based memory to recall-related conversations from the past. Thus, providing context feature derived from query systems to generative systems such as OpenAI GPT. Using graphs to detect important details from the past reduces the total amount of processing done by the neural network. As there is no need to keep on passingthe entire history of the conversation. Instead, we pass only the last few pairs of utterances and the related details from the graph. This paper deploys this system and also demonstrates the ability to deploy such systems in real-world applications. Through the effective usage of knowledge graphs, the system is able to reduce the time complexity from O(n) to O(1) as compared to similar non-graph based implementations of transfer learning- based conversational agents.
Scotti, Vincenzo, Tedesco, Roberto, Sbattella, Licia.  2021.  A Modular Data-Driven Architecture for Empathetic Conversational Agents. 2021 IEEE International Conference on Big Data and Smart Computing (BigComp). :365–368.
Empathy is a fundamental mechanism of human interactions. As such, it should be an integral part of Human-Computer Interaction systems to make them more relatable. With this work, we focused on conversational scenarios where integrating empathy is crucial to perceive the computer like a human. As a result, we derived the high-level architecture of an Empathetic Conversational Agent we are willing to implement. We relied on theories about artificial empathy to derive the function approximating this mechanism and selected the conversational aspects to control for an empathetic interaction. In particular, we designed a core empathetic controller manages the empathetic responses, predicting, at each turn, the high-level content of the response. The derived architecture integrates empathy in a task-agnostic manner; hence we can employ it in multiple scenarios by changing the objective of the controller.
Goel, Raman, Vashisht, Sachin, Dhanda, Armaan, Susan, Seba.  2021.  An Empathetic Conversational Agent with Attentional Mechanism. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1–4.
The number of people suffering from mental health issues like depression and anxiety have spiked enormously in recent times. Conversational agents like chatbots have emerged as an effective way for users to express their feelings and anxious thoughts and in turn obtain some empathetic reply that would relieve their anxiety. In our work, we construct two types of empathetic conversational agent models based on sequence-to-sequence modeling with and without attention mechanism. We implement the attention mechanism proposed by Bahdanau et al. for neural machine translation models. We train our model on the benchmark Facebook Empathetic Dialogue dataset and the BLEU scores are computed. Our empathetic conversational agent model incorporating attention mechanism generates better quality empathetic responses and is better in capturing human feelings and emotions in the conversation.
Hounsinou, Sena, Stidd, Mark, Ezeobi, Uchenna, Olufowobi, Habeeb, Nasri, Mitra, Bloom, Gedare.  2021.  Vulnerability of Controller Area Network to Schedule-Based Attacks. 2021 IEEE Real-Time Systems Symposium (RTSS). :495–507.
The secure functioning of automotive systems is vital to the safety of their passengers and other roadway users. One of the critical functions for safety is the controller area network (CAN), which interconnects the safety-critical electronic control units (ECUs) in the majority of ground vehicles. Unfortunately CAN is known to be vulnerable to several attacks. One such attack is the bus-off attack, which can be used to cause a victim ECU to disconnect itself from the CAN bus and, subsequently, for an attacker to masquerade as that ECU. A limitation of the bus-off attack is that it requires the attacker to achieve tight synchronization between the transmission of the victim and the attacker's injected message. In this paper, we introduce a schedule-based attack framework for the CAN bus-off attack that uses the real-time schedule of the CAN bus to predict more attack opportunities than previously known. We describe a ranking method for an attacker to select and optimize its attack injections with respect to criteria such as attack success rate, bus perturbation, or attack latency. The results show that vulnerabilities of the CAN bus can be enhanced by schedule-based attacks.
Kang, Dong Mug, Yoon, Sang Hun, Shin, Dae Kyo, Yoon, Young, Kim, Hyeon Min, Jang, Soo Hyun.  2021.  A Study on Attack Pattern Generation and Hybrid MR-IDS for In-Vehicle Network. 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :291–294.
The CAN (Controller Area Network) bus, which transmits and receives ECU control information in vehicle, has a critical risk of external intrusion because there is no standardized security system. Recently, the need for IDS (Intrusion Detection System) to detect external intrusion of CAN bus is increasing, and high accuracy and real-time processing for intrusion detection are required. In this paper, we propose Hybrid MR (Machine learning and Ruleset) -IDS based on machine learning and ruleset to improve IDS performance. For high accuracy and detection rate, feature engineering was conducted based on the characteristics of the CAN bus, and the generated features were used in detection step. The proposed Hybrid MR-IDS can cope to various attack patterns that have not been learned in previous, as well as the learned attack patterns by using both advantages of rule set and machine learning. In addition, by collecting CAN data from an actual vehicle in driving and stop state, five attack scenarios including physical effects during all driving cycle are generated. Finally, the Hybrid MR-IDS proposed in this paper shows an average of 99% performance based on F1-score.
Prakash, Jay, Yu, Clarice Chua Qing, Thombre, Tanvi Ravindra, Bytes, Andrei, Jubur, Mohammed, Saxena, Nitesh, Blessing, Lucienne, Zhou, Jianying, Quek, Tony Q.S.  2021.  Countering Concurrent Login Attacks in “Just Tap” Push-based Authentication: A Redesign and Usability Evaluations. 2021 IEEE European Symposium on Security and Privacy (EuroS&P). :21—36.
In this paper, we highlight a fundamental vulnerability associated with the widely adopted “Just Tap” push-based authentication in the face of a concurrency attack, and propose the method REPLICATE, a redesign to counter this vulnerability. In the concurrency attack, the attacker launches the login session at the same time the user initiates a session, and the user may be fooled, with high likelihood, into accepting the push notification which corresponds to the attacker's session, thinking it is their own. The attack stems from the fact that the login notification is not explicitly mapped to the login session running on the browser in the Just Tap approach. REPLICATE attempts to address this fundamental flaw by having the user approve the login attempt by replicating the information presented on the browser session over to the login notification, such as by moving a key in a particular direction, choosing a particular shape, etc. We report on the design and a systematic usability study of REPLICATE. Even without being aware of the vulnerability, in general, participants placed multiple variants of REPLICATE in competition to the Just Tap and fairly above PIN-based authentication.
Muchhala, Yash, Singhania, Harshit, Sheth, Sahil, Devadkar, Kailas.  2021.  Enabling MapReduce based Parallel Computation in Smart Contracts. 2021 6th International Conference on Inventive Computation Technologies (ICICT). :537—543.
Smart Contracts based cryptocurrencies such as Ethereum are becoming increasingly popular in various domains: but with this increase in popularity comes a significant decrease in throughput and efficiency. Smart Contracts are executed by every miner in the system serially without any parallelism, both inter and intra-Smart Contracts. Such a serial execution inhibits the scalability required to obtain extremely high throughput pertaining to computationally intensive tasks deployed with such Smart Contracts. While significant advancements have been made in the field of concurrency, from GPU architectures that enable massively parallel computation to tools such as MapRe-duce that distributed computing to several nodes connected in the system to achieve higher performance in distributed systems, none are incorporated in blockchain-based distributed computing. The team proposes a novel blockchain that allows public nodes in a permission-independent blockchain to deploy and run Smart Contracts that provide concurrency-related functionalities within the Smart Contract framework. In this paper, the researchers present “ConCurrency,” a blockchain network capable of handling big data-based computations. The technique is based on currently used distributed system paradigms, such as MapReduce, while also allowing for fundamental parallelly computable problems. Concurrency is achieved using a sharding protocol incorporated with consensus mechanisms to ensure high scalability, high reliability, and better efficiency. A detailed methodology and a comprehensive analysis of the proposed blockchain further indicate a significant increase in throughput for parallelly computable tasks, as detailed in this paper.
Ghosal, Sandip, Shyamasundar, R. K..  2021.  An Axiomatic Approach to Detect Information Leaks in Concurrent Programs. 2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). :31—35.
Realizing flow security in a concurrent environment is extremely challenging, primarily due to non-deterministic nature of execution. The difficulty is further exacerbated from a security angle if sequential threads disclose control locations through publicly observable statements like print, sleep, delay, etc. Such observations lead to internal and external timing attacks. Inspired by previous works that use classical Hoare style proof systems for establishing correctness of distributed (real-time) programs, in this paper, we describe a method for finding information leaks in concurrent programs through the introduction of leaky assertions at observable program points. Specifying leaky assertions akin to classic assertions, we demonstrate how information leaks can be detected in a concurrent context. To our knowledge, this is the first such work that enables integration of different notions of non-interference used in functional and security context. While the approach is sound and relatively complete in the classic sense, it enables the use of algorithmic techniques that enable programmers to come up with leaky assertions that enable checking for information leaks in sensitive applications.