Ismaeel, Khaled, Naumchev, Alexandr, Sadovykh, Andrey, Truscan, Dragos, Enoiu, Eduard Paul, Seceleanu, Cristina.
2021.
Security Requirements as Code: Example from VeriDevOps Project. 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW). :357–363.
This position paper presents and illustrates the concept of security requirements as code – a novel approach to security requirements specification. The aspiration to minimize code duplication and maximize its reuse has always been driving the evolution of software development approaches. Object-Oriented programming (OOP) takes these approaches to the state in which the resulting code conceptually maps to the problem that the code is supposed to solve. People nowadays start learning to program in the primary school. On the other hand, requirements engineers still heavily rely on natural language based techniques to specify requirements. The key idea of this paper is: artifacts produced by the requirements process should be treated as input to the regular object-oriented analysis. Therefore, the contribution of this paper is the presentation of the major concepts for the security requirements as the code method that is illustrated with a real industry example from the VeriDevOps project.
Shih, Chi-Huang, Lin, Cheng-Jian, Wei, Ta-Sen, Liu, Peng-Ta, Shih, Ching-Yu.
2021.
Behavior Analysis based on Local Object Tracking and its Bed-exit Application. 2021 IEEE 4th International Conference on Knowledge Innovation and Invention (ICKII). :101–104.
Human behavior analysis is the process that consists of activity monitoring and behavior recognition and has become the core component of intelligent applications such as security surveillance and fall detection. Generally, the techniques involved in behavior recognition include sensor and vision-based processing. During the process, the activity information is typically required to ensure a good recognition performance. On the other hand, the privacy issue attracts much attention and requires a limited range of activity monitoring accordingly. We study behavior analysis for such privacy-oriented applications. A local object tracking (LOT) technique based on an infrared sensor array is developed in a limited monitoring range and is further realized to a practical bed-exit system in the clinical test environment. The experimental results show a correct recognition rate of 99% for 6 bedside activities. In addition, 89% of participants in a satisfaction survey agree on its effectiveness.
Kientega, Raoul, Sidibé, Moustapha Hadji, Traore, Tiemogo.
2021.
Toward an Enhanced Tool for Internet Exchange Point Detection. 2021 3rd International Multidisciplinary Information Technology and Engineering Conference (IMITEC). :1–3.
Internet Exchange Points (IXPs) are critical components of the Internet infrastructure that affect its performance, evolution, security and economy. In this work, we introduce a technique to improve the well-known TraIXroute tool with its ability to identify IXPs. TraIXroute is a tool written in python3. It always encounters problems during its installation by network administrators and researchers. This problem remains unchanged in the field of internet ixp measurement tools. Our paper aims to make a critical analysis of TraIXroute tool which has some malfunctions. Furthermore, our main objective is to implement an improved tool for detecting ixps on the traceroute path with ipv4 and ipv6. The tool will have options for Geolocation of ixps as well as ASs. Our tool is written in C\# (C sharp) and python which are object oriented programming languages.
Saxena, Nikhil, Narayanan, Ram Venkat, Meka, Juneet Kumar, Vemuri, Ranga.
2021.
SRTLock: A Sensitivity Resilient Two-Tier Logic Encryption Scheme. 2021 IEEE International Symposium on Smart Electronic Systems (iSES). :389—394.
Logic encryption is a method to improve hardware security by inserting key gates on carefully selected signals in a logic design. Various logic encryption schemes have been proposed in the past decade. Many attack methods to thwart these logic locking schemes have also emerged. The satisfiability (SAT) attack can recover correct keys for many logic obfuscation methods. Recently proposed sensitivity analysis attack can decrypt stripped functionality based logic encryption schemes. This article presents a new encryption scheme named SRTLock, which is resilient against both attacks. SRTLock method first generates 0-injection circuits and encrypts the functionality of these nodes with the key inputs. In the next step, these values are used to control the sensitivity of the functionally stripped output for specific input patterns. The resultant locked circuit is resilient against the SAT and sensitivity analysis attacks. Experimental results demonstrating this on several attacks using standard benchmark circuits are presented.
Azhari Halim, Muhammad Arif, Othman, Mohd. Fairuz Iskandar, Abidin, Aa Zezen Zaenal, Hamid, Erman, Harum, Norharyati, Shah, Wahidah Md.
2021.
Face Recognition-based Door Locking System with Two-Factor Authentication Using OpenCV. 2021 Sixth International Conference on Informatics and Computing (ICIC). :1—7.
This project develops a face recognition-based door locking system with two-factor authentication using OpenCV. It uses Raspberry Pi 4 as the microcontroller. Face recognition-based door locking has been around for many years, but most of them only provide face recognition without any added security features, and they are costly. The design of this project is based on human face recognition and the sending of a One-Time Password (OTP) using the Twilio service. It will recognize the person at the front door. Only people who match the faces stored in its dataset and then inputs the correct OTP will have access to unlock the door. The Twilio service and image processing algorithm Local Binary Pattern Histogram (LBPH) has been adopted for this system. Servo motor operates as a mechanism to access the door. Results show that LBPH takes a short time to recognize a face. Additionally, if an unknown face is detected, it will log this instance into a "Fail" file and an accompanying CSV sheet.
Shanmukha Naga Naidu, P., Naga Sumanth, B., Sri Ram Koduri, Pavan, Sri Ram Teja, M., Remadevi Somanathan, Geethu, Bhakthavatchalu, Ramesh.
2021.
Secured Test Pattern Generators for BIST. 2021 5th International Conference on Computing Methodologies and Communication (ICCMC). :542—546.
With the development in IC technology, testing the designs is becoming more and more complex. In the design, process testing consumes 60-80% of the time. The basic testing principle is providing the circuit under test (CUT) with input patterns, observing output responses, and comparing against the desired response called the golden response. As the density of the device are rising leads to difficulty in examining the sub-circuit of the chip. So, testing of design is becoming a time-consuming and costly process. Attaching additional logic to the circuit resolves the issue by testing itself. BIST is a relatively a design for testability technique to facilitate thorough testing of ICs and it comprises the test pattern generator, circuit under test, and output response analyzer. Quick diagnosis and very high fault coverage can be ensured by BIST. As complexity in the circuit is increasing, testing urges TPGs (Test Pattern Generators) to generate the test patterns for the CUT to sensitize the faults. TPGs are vulnerable to malicious activities such as scan-based side-channel attacks. Secret data saved on the chip can be extracted by an attacker by scanning out the test outcomes. These threats lead to the emergence of securing TPGs. This work demonstrates providing a secured test pattern generator for BIST circuits by locking the logic of TPG with a password or key generated by the key generation circuit. Only when the key is provided test patterns are generated. This provides versatile protection to TPG from malicious attacks such as scan-based side-channel attacks, Intellectual Property (IP) privacy, and IC overproduction.
Sharma, Kavya, Chakravarti, Praveen Kumar, Sharma, Rohan, Parashar, Kanishq, Pal, Nisha.
2021.
A Review on Internet of Things Based Door Security. 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE). :1—4.
{On considering workplace thefts as a major problem, there is a requirement of designing a vandal proof door hardware and locking mechanism for ensuring the security of our property. So the door lock system with extra security features with a user friendly cost is suggested in this paper. When a stranger comes at the door, he/she has to pass three security levels for unlocking the solenoid locks present at the door and if he fails to do so, the door will remain locked. These three levels are of three extraordinary security features as one of them is using Fingerprint sensor, second is using a knocking pattern, and the last lock is unlocked by the preset pin/pattern entered by the user. Since, in addition to these features, there is one more option for the case of appearing of guest at the door and that is the Image capturing using web-camera present at the door and here the owner of the house is able to unlock all the locks if he wants the guest to enter the home. This all will be monitored by Node MCU}.
Tahirovic, Alma Ademovic, Angeli, David, Strbac, Goran.
2021.
A Complex Network Approach to Power System Vulnerability Analysis based on Rebalance Based Flow Centrality. 2021 IEEE Power & Energy Society General Meeting (PESGM). :01—05.
The study of networks is an extensively investigated field of research, with networks and network structure often encoding relationships describing certain systems or processes. Critical infrastructure is understood as being a structure whose failure or damage has considerable impact on safety, security and wellbeing of society, with power systems considered a classic example. The work presented in this paper builds on the long-lasting foundations of network and complex network theory, proposing an extension in form of rebalance based flow centrality for structural vulnerability assessment and critical component identification in adaptive network topologies. The proposed measure is applied to power system vulnerability analysis, with performance demonstrated on the IEEE 30-, 57- and 118-bus test system, outperforming relevant methods from the state-of-the-art. The proposed framework is deterministic (guaranteed), analytically obtained (interpretable) and generalizes well with changing network parameters, providing a complementary tool to power system vulnerability analysis and planning.
Shu, ZhiMeng, Liu, YongGuang, Wang, HuiNan, Sun, ChaoLiang, He, ShanShan.
2021.
Research on the feasibility technology of Internet of things terminal security monitoring. 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT). :831—836.
As an important part of the intelligent measurement system, IOT terminal is in the “edge” layer of the intelligent measurement system architecture. It is the key node of power grid management and cloud fog integration. Its information security is the key to the construction of the security system of intelligent measurement, and the security link between the cloud and sensor measurement. With the in-depth integration of energy flow, information flow and business flow, and the in-depth application of digital technologies such as cloud computing, big data, internet of things, mobile Internet and artificial intelligence, the transformation and development of power system to digital and high-quality digital power grid has been accelerated. As a typical multi-dimensional complex system combining physical space and information space, the security threats and risks faced by the digital grid are more complex. The security risks in the information space will transfer the hazards to the power system and physical space. The Internet of things terminal is facing a more complex situation in the security field than before. This paper studies the feasibility of the security monitoring technology of the Internet of things terminal, in order to reduce the potential risks, improve the safe operation environment of the Internet of things terminal and improve the level of the security protection of the Internet of things terminal. One is to study the potential security problems of Internet of things terminal, and put forward the technical specification of security protection of Internet of things terminal. The second is to study the Internet of things terminal security detection technology, research and develop terminal security detection platform, and realize the unified detection of terminal security protection. The third is to study the security monitoring technology of the Internet of things terminal, develop the security monitoring system of the Internet of things terminal, realize the terminal security situation awareness and threat identification, timely discover the terminal security vulnerabilities, and ensure the stable and safe operation of the terminal and related business master station.