Biblio
Filters: First Letter Of Last Name is S [Clear All Filters]
Cyber-Security Incident Analysis by Causal Analysis using System Theory (CAST). 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :806–815.
.
2021. STAMP (System Theoretic Accident Model and Processes) is one of the theories that has been attracting attention as a new safety analysis method for complex systems. CAST (Causal Analysis using System Theory) is a causal analysis method based on STAMP theory. The authors investigated an information security incident case, “AIST (National Institute of Advanced Industrial Science and Technology) report on unauthorized access to information systems,” and attempted accident analysis using CAST. We investigated whether CAST could be applied to the cyber security analysis. Since CAST is a safety accident analysis technique, this study was the first to apply CAST to cyber security incidents. Its effectiveness was confirmed from the viewpoint of the following three research questions. Q1:Features of CAST as an accident analysis method Q2:Applicability and impact on security accident analysis Q3:Understanding cyber security incidents with a five-layer model.
Acceptable Variants Formation Methods of Organizational Structure and the Automated Information Security Management System Structure. 2021 XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering (APEIE). :631–635.
.
2021. To ensure comprehensive information protection, it is necessary to use various means of information protection, distributed by levels and segments of the information system. This creates a contradiction, which consists in the presence of many different means of information protection and the inability to ensure their joint coordinated application in ensuring the protection of information due to the lack of an automated control system. One of the tasks that contribute to the solution of this problem is the task of generating a feasible organizational structure and the structure of such an automated control system, the results of which would provide these options and choose the one that is optimal under given initial parameters and limitations. The problem is solved by reducing the General task with particular splitting the original graph of the automated cyber defense control system into subgraphs. As a result, the organizational composition and the automated cyber defense management system structures will provide a set of acceptable variants, on the basis of which the optimal choice is made under the given initial parameters and restrictions. As a result, admissible variants for the formation technique of organizational structure and structure by the automated control system of cyber defense is received.
On the Performance of Isolation Forest and Multi Layer Perceptron for Anomaly Detection in Industrial Control Systems Networks. 2021 8th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1–6.
.
2021. With an increasing number of adversarial attacks against Industrial Control Systems (ICS) networks, enhancing the security of such systems is invaluable. Although attack prevention strategies are often in place, protecting against all attacks, especially zero-day attacks, is becoming impossible. Intrusion Detection Systems (IDS) are needed to detect such attacks promptly. Machine learning-based detection systems, especially deep learning algorithms, have shown promising results and outperformed other approaches. In this paper, we study the efficacy of a deep learning approach, namely, Multi Layer Perceptron (MLP), in detecting abnormal behaviors in ICS network traffic. We focus on very common reconnaissance attacks in ICS networks. In such attacks, the adversary focuses on gathering information about the targeted network. To evaluate our approach, we compare MLP with isolation Forest (i Forest), a statistical machine learning approach. Our proposed deep learning approach achieves an accuracy of more than 99% while i Forest achieves only 75%. This helps to reinforce the promise of using deep learning techniques for anomaly detection.
Cyber-Physical Anomaly Detection for ICS. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :950–955.
.
2021. Industrial Control Systems (ICS) are complex systems made up of many components with different tasks. For a safe and secure operation, each device needs to carry out its tasks correctly. To monitor a system and ensure the correct behavior of systems, anomaly detection is used.Models of expected behavior often rely only on cyber or physical features for anomaly detection. We propose an anomaly detection system that combines both types of features to create a dynamic fingerprint of an ICS. We present how a cyber-physical anomaly detection using sound on the physical layer can be designed, and which challenges need to be overcome for a successful implementation. We perform an initial evaluation for identifying actions of a 3D printer.
Design and Application of Converged Infrastructure through Virtualization Technology in Grid Operation Control Center in North Eastern Region of India. 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies. :1–5.
.
2021. Modern day grid operation requires multiple interlinked applications and many automated processes at control center for monitoring and operation of grid. Information technology integrated with operational technology plays a critical role in grid operation. Computing resource requirements of these software applications varies widely and includes high processing applications, high Input/Output (I/O) sensitive applications and applications with low resource requirements. Present day grid operation control center uses various applications for load despatch schedule management, various real-time analytics & optimization applications, post despatch analysis and reporting applications etc. These applications are integrated with Operational Technology (OT) like Data acquisition system / Energy management system (SCADA/EMS), Wide Area Measurement System (WAMS) etc. This paper discusses various design considerations and implementation of converged infrastructure through virtualization technology by consolidation of servers and storages using multi-cluster approach to meet high availability requirement of the applications and achieve desired objectives of grid control center of north eastern region in India. The process involves weighing benefits of different architecture solution, grouping of application hosts, making multiple clusters with reliability and security considerations, and designing suitable infrastructure to meet all end objectives. Reliability, enhanced resource utilization, economic factors, storage and physical node selection, integration issues with OT systems and optimization of cost are the prime design considerations. Modalities adopted to minimize downtime of critical systems for grid operation during migration from the existing infrastructure and integration with OT systems of North Eastern Regional Load Despatch Center are also elaborated in this paper.
Deep Learning Based Event Correlation Analysis in Information Systems. 2021 6th International Conference on Computer Science and Engineering (UBMK). :209–214.
.
2021. Information systems and applications provide indispensable services at every stage of life, enabling us to carry out our activities more effectively and efficiently. Today, information technology systems produce many alarm and event records. These produced records often have a relationship with each other, and when this relationship is captured correctly, many interruptions that will harm institutions can be prevented before they occur. For example, an increase in the disk I/O speed of a server or a problem may cause the business software running on that server to slow down and cause different results in this slowness. Here, an institution’s accurate analysis and management of all event records, and rule-based analysis of the resulting records in certain time periods and depending on certain rules will ensure efficient and effective management of millions of alarms. In addition, it will be possible to prevent possible problems by removing the relationships between events. Events that occur in IT systems are a kind of footprint. It is also vital to keep a record of the events in question, and when necessary, these event records can be analyzed to analyze the efficiency of the systems, harmful interferences, system failure tendency, etc. By understanding the undesirable situations such as taking the necessary precautions, possible losses can be prevented. In this study, the model developed for fault prediction in systems by performing event log analysis in information systems is explained and the experimental results obtained are given.
A Collaborative Filtering Model for Link Prediction of Fusion Knowledge Graph. 2021 21st ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter). :33–38.
.
2021. In order to solve the problem that collaborative filtering recommendation algorithm completely depends on the interactive behavior information of users while ignoring the correlation information between items, this paper introduces a link prediction algorithm based on knowledge graph to integrate ItemCF algorithm. Through the linear weighted fusion of the item similarity matrix obtained by the ItemCF algorithm and the item similarity matrix obtained by the link prediction algorithm, the new fusion matrix is then introduced into ItemCF algorithm. The MovieLens-1M data set is used to verify the KGLP-ItemCF model proposed in this paper, and the experimental results show that the KGLP-ItemCF model effectively improves the precision, recall rate and F1 value. KGLP-ItemCF model effectively solves the problems of sparse data and over-reliance on user interaction information by introducing knowledge graph into ItemCF algorithm.
Human Susceptibility to Phishing Attacks Based on Personality Traits: The Role of Neuroticism. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1363–1368.
.
2021. The COVID19 pandemic situation has opened a wide range of opportunities for cyber-criminals, who take advantage of the anxiety generated and the time spent on the Internet, to undertake massive phishing campaigns. Although companies are adopting protective measures, the psychological traits of the victims are still considered from a very generic perspective. In particular, current literature determines that the model proposed in the Big-Five personality traits (i.e., Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism) might play an important role in human behaviour to counter cybercrime. However, results do not provide unanimity regarding the correlation between phishing susceptibility and neuroticism. With the aim to understand this lack of consensus, this article provides a comprehensive literature review of papers extracted from relevant databases (IEEE Xplore, Scopus, ACM Digital Library, and Web of Science). Our results show that there is not a well-established psychological theory explaining the role of neuroticism in the phishing context. We sustain that non-representative samples and the lack of homogeneity amongst the studies might be the culprits behind this lack of consensus on the role of neuroticism on phishing susceptibility.
Oppositional Human Factors in Cybersecurity: A Preliminary Analysis of Affective States. 2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW). :153–158.
.
2021. The need for cyber defense research is growing as more cyber-attacks are directed at critical infrastructure and other sensitive networks. Traditionally, the focus has been on hardening system defenses. However, other techniques are being explored including cyber and psychological deception which aim to negatively impact the cognitive and emotional state of cyber attackers directly through the manipulation of network characteristics. In this study, we present a preliminary analysis of survey data collected following a controlled experiment in which over 130 professional red teamers participated in a network penetration task that included cyber deception and psychological deception manipulations [7]. Thematic and inductive analysis of previously un-analyzed open-ended survey responses revealed factors associated with affective states. These preliminary results are a first step in our analysis efforts and show that there are potentially several distinct dimensions of cyber-behavior that induce negative affective states in cyber attackers, which may serve as potential avenues for supplementing traditional cyber defense strategies.
Trends in Cybersecurity Management Issues Related to Human Behaviour and Machine Learning. 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1–8.
.
2021. The number of organisational cybersecurity threats continues to increase every year as technology advances. All too often, organisations assume that implementing systems security measures like firewalls and anti-virus software will eradicate cyber threats. However, even the most robust security systems are vulnerable to threats. As advanced as machine learning cybersecurity technology is becoming, it cannot be solely relied upon to solve cyber threats. There are other forces that contribute to these threats that are many-a-times out of an organisation's control i.e., human behaviour. This research article aims to create an understanding of the trends in key cybersecurity management issues that have developed in the past five years in relation to human behaviour and machine learning. The methodology adopted to guide the synthesis of this review was a systematic literature review. The guidelines for conducting the review are presented in the review approach. The key cybersecurity management issues highlighted by the research includes risky security behaviours demonstrated by employees, social engineering, the current limitations present in machine learning insider threat detection, machine learning enhanced cyber threats, and the underinvestment challenges faced in the cybersecurity domain.
Improvement of Security in Multi-Biometric Cryptosystem by Modulus Fuzzy Vault Algorithm. 2021 International Conference on Advances in Computing and Communications (ICACC). :1—7.
.
2021. Numerous prevalent techniques build a Multi-Modal Biometric (MMB) system that struggles in offering security and also revocability onto the templates. This work proffered a MMB system centred on the Modulus Fuzzy Vault (MFV) aimed at resolving these issues. The methodology proposed includes Fingerprint (FP), Palmprint (PP), Ear and also Retina images. Utilizing the Boosted Double Plateau Histogram Equalization (BDPHE) technique, all images are improved. Aimed at removing the unnecessary things as of the ear and the blood vessels are segmented as of the retina images utilizing the Modified Balanced Iterative Reducing and Clustering using Hierarchy (MBIRCH) technique. Next, the input traits features are extracted; then the essential features are chosen as of the features extracted utilizing the Bidirectional Deer Hunting optimization Algorithm (BDHOA). The features chosen are merged utilizing the Normalized Feature Level and Score Level (NFLSL) fusion. The features fused are saved securely utilizing Modulus Fuzzy Vault. Upto fusion, the procedure is repeated aimed at the query image template. Next, the de-Fuzzy Vault procedure is executed aimed at the query template, and then the key is detached by matching the query template’s and input biometric template features. The key separated is analogized with the threshold that categorizes the user as genuine or else imposter. The proposed BDPHE and also MFV techniques function efficiently than the existent techniques.
Fuzzy AHP based Ranking of Cryptography Indicators. 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (℡SIKS). :237—240.
.
2021. The progression of cryptographic attacks in the ICT era doubtless leads to the development of new cryptographic algorithms and assessment, and evaluation of the existing ones. In this paper, the artificial intelligence application, through the fuzzy analytic hierarchy process (FAHP) implementation, is used to rank criteria and sub-criteria on which the algorithms are based to determine the most promising criteria and optimize their use. Out of fifteen criteria, security soundness, robustness and hardware failure distinguished as significant ones.
Passenger Volume Interval Prediction based on MTIGM (1,1) and BP Neural Network. 2021 33rd Chinese Control and Decision Conference (CCDC). :6013—6018.
.
2021. The ternary interval number contains more comprehensive information than the exact number, and the prediction of the ternary interval number is more conducive to intelligent decision-making. In order to reduce the overfitting problem of the neural network model, a combination prediction method of the BP neural network and the matrix GM (1, 1) model for the ternary interval number sequence is proposed in the paper, and based on the proposed method to predict the passenger volume. The matrix grey model for the ternary interval number sequence (MTIGM (1, 1)) can stably predict the overall development trend of a time series. Considering the integrity of interval numbers, the BP neural network model is established by combining the lower, middle and upper boundary points of the ternary interval numbers. The combined weights of MTIGM (1, 1) and the BP neural network are determined based on the grey relational degree. The combined method is used to predict the total passenger volume and railway passenger volume of China, and the prediction effect is better than MTIGM (1, 1) and BP neural network.
Smart Blockchain-based Control-data Protection Framework for Trustworthy Smart Grid Operations. 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0963—0969.
.
2021. The critical nature of smart grids (SGs) attracts various network attacks and malicious manipulations. Existent SG solutions are less capable of ensuring secure and trustworthy operation. This is due to the large-scale nature of SGs and reliance on network protocols for trust management. A particular example of such severe attacks is the false data injection (FDI). FDI refers to a network attack, where meters' measurements are manipulated before being reported in such a way that the energy system takes flawed decisions. In this paper, we exploit the secure nature of blockchains to construct a data management framework based on public blockchain. Our framework enables trustworthy data storage, verification, and exchange between SG components and decision-makers. Our proposed system enables miners to invest their computational power to verify blockchain transactions in a fully distributed manner. The mining logic employs machine learning (ML) techniques to identify the locations of compromised meters in the network, which are responsible for generating FDI attacks. In return, miners receive virtual credit, which may be used to pay their electric bills. Our design circumvents single points of failure and intentional FDI attempts. Our numerical results compare the accuracy of three different ML-based mining logic techniques in two scenarios: focused and distributed FDI attacks for different attack levels. Finally, we proposed a majority-decision mining technique for the practical case of an unknown FDI attack level.
Remote Non-Intrusive Malware Detection for PLCs based on Chain of Trust Rooted in Hardware. 2021 IEEE European Symposium on Security and Privacy (EuroS&P). :369—384.
.
2021. Digitization has been rapidly integrated with manufacturing industries and critical infrastructure to increase efficiency, productivity, and reduce wastefulness, a transition being labeled as Industry 4.0. However, this expansion, coupled with the poor cybersecurity posture of these Industrial Internet of Things (IIoT) devices, has made them prolific targets for exploitation. Moreover, modern Programmable Logic Controllers (PLC) used in the Operational Technology (OT) sector are adopting open-source operating systems such as Linux instead of proprietary software, making such devices susceptible to Linux-based malware. Traditional malware detection approaches cannot be applied directly or extended to such environments due to the unique restrictions of these PLC devices, such as limited computational power and real-time requirements. In this paper, we propose ORRIS, a novel lightweight and out-of-the-device framework that detects malware at both kernel and user-level by processing the information collected using the Joint Test Action Group (JTAG) interface. We evaluate ORRIS against in-the-wild Linux malware achieving maximum detection accuracy of ≈99.7% with very few false-positive occurrences, a result comparable to the state-of-the-art commercial products. Moreover, we also develop and demonstrate a real-time implementation of ORRIS for commercial PLCs.
A Stealthier False Data Injection Attack against the Power Grid. 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :108—114.
.
2021. We use discrete-time adaptive control theory to design a novel false data injection (FDI) attack against automatic generation control (AGC), a critical system that maintains a power grid at its requisite frequency. FDI attacks can cause equipment damage or blackouts by falsifying measurements in the streaming sensor data used to monitor the grid's operation. Compared to prior work, the proposed attack (i) requires less knowledge on the part of the attacker, such as correctly forecasting the future demand for power; (ii) is stealthier in its ability to bypass standard methods for detecting bad sensor data and to keep the false sensor readings near historical norms until the attack is well underway; and (iii) can sustain the frequency excursion as long as needed to cause real-world damage, in spite of AGC countermeasures. We validate the performance of the proposed attack on realistic 37-bus and 118-bus setups in PowerWorld, an industry-strength power system simulator trusted by real-world operators. The results demonstrate the attack's improved stealthiness and effectiveness compared to prior work.
A Novel Trust-based Model for Collaborative Filtering Recommendation Systems using Entropy. 2021 8th International Conference on Dependable Systems and Their Applications (DSA). :184—188.
.
2021. With the proliferation of false redundant information on various e-commerce platforms, ineffective recommendations and other untrustworthy behaviors have seriously hindered the healthy development of e-commerce platforms. Modern recommendation systems often use side information to alleviate these problems and also increase prediction accuracy. One such piece of side information, which has been widely investigated, is trust. However, it is difficult to obtain explicit trust relationship data, so researchers infer trust values from other methods, such as the user-to-item relationship. In this paper, addressing the problems, we proposed a novel trust-based recommender model called UITrust, which uses user-item relationship value to improve prediction accuracy. With the improvement the traditional similarity measures by employing the entropies of user and item history ratings to reflect the global rating behavior on both. We evaluate the proposed model using two real-world datasets. The proposed model performs significantly better than the baseline methods. Also, we can use the UITrust to alleviate the sparsity problem associated with correlation-based similarity. In addition to that, the proposed model has a better computational complexity for making predictions than the k-nearest neighbor (kNN) method.
A Novel Approach for the Detection of DDoS Attacks in SDN using Information Theory Metric. 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom). :512—516.
.
2021. Internet always remains the target for the cyberattacks, and attackers are getting equipped with more potent tools due to the advancement of technology to preach the security of the Internet. Industries and organizations are sponsoring many projects to avoid these kinds of problems. As a result, SDN (Software Defined Network) architecture is becoming an acceptable alternative for the traditional IP based networks which seems a better approach to defend the Internet. However, SDN is also vulnerable to many new threats because of its architectural concept. SDN might be a primary target for DoS (Denial of Service) and DDoS (Distributed Denial of Service) attacks due to centralized control and linking of data plane and control plane. In this paper, the we propose a novel technique for detection of DDoS attacks using information theory metric. We compared our approach with widely used Intrusion Detection Systems (IDSs) based on Shannon entropy and Renyi entropy, and proved that our proposed methodology has more power to detect malicious flows in SDN based networks. We have used precision, detection rate and FPR (False Positive Rate) as performance parameters for comparison, and validated the methodology using a topology implemented in Mininet network emulator.
A Possibilistic Evolutionary Approach to Handle the Uncertainty of Software Metrics Thresholds in Code Smells Detection. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS). :574—585.
.
2021. A code smells detection rule is a combination of metrics with their corresponding crisp thresholds and labels. The goal of this paper is to deal with metrics' thresholds uncertainty; as usually such thresholds could not be exactly determined to judge the smelliness of a particular software class. To deal with this issue, we first propose to encode each metric value into a binary possibility distribution with respect to a threshold computed from a discretization technique; using the Possibilistic C-means classifier. Then, we propose ADIPOK-UMT as an evolutionary algorithm that evolves a population of PK-NN classifiers for the detection of smells under thresholds' uncertainty. The experimental results reveal that the possibility distribution-based encoding allows the implicit weighting of software metrics (features) with respect to their computed discretization thresholds. Moreover, ADIPOK-UMT is shown to outperform four relevant state-of-art approaches on a set of commonly adopted benchmark software systems.
PGAN:A Generative Adversarial Network based Anomaly Detection Method for Network Intrusion Detection System. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :734—741.
.
2021. With the rapid development of communication net-work, the types and quantities of network traffic data have in-creased substantially. What followed was the frequent occurrence of versatile cyber attacks. As an important part of network security, the network-based intrusion detection system (NIDS) can monitor and protect the network equippments and terminals in real time. The traditional detection methods based on deep learning (DL) are always in supervised manners in NIDS, which can automatically build end-to-end detection model without man-ual feature extraction and selection by domain experts. However, supervised learning methods require large-scale labeled data, yet capturing large labeled datasets is a very cubersome, tedious and time-consuming manual task. Instead, unsupervised learning is an effective way to overcome this problem. Nonetheless, the ex-isting unsupervised methods are prone to low detection efficiency and are difficult to train. In this paper we propose a novel NIDS method called PGAN based on generative adversarial network (GAN) to detect the abnormal traffic from the perspective of Anomaly Detection, which leverage the competitive speciality of adversarial training to learn the normal traffic. Based on the public dataset CICIDS2017, three experimental results show that PGAN can significantly outperform other unsupervised methods like stacked autoencoder (SAE) and isolation forest (IF).
DDUO: General-Purpose Dynamic Analysis for Differential Privacy. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1—15.
.
2021. Differential privacy enables general statistical analysis of data with formal guarantees of privacy protection at the individual level. Tools that assist data analysts with utilizing differential privacy have frequently taken the form of programming languages and libraries. However, many existing programming languages designed for compositional verification of differential privacy impose significant burden on the programmer (in the form of complex type annotations). Supplementary library support for privacy analysis built on top of existing general-purpose languages has been more usable, but incapable of pervasive end-to-end enforcement of sensitivity analysis and privacy composition. We introduce DDuo, a dynamic analysis for enforcing differential privacy. DDuo is usable by non-experts: its analysis is automatic and it requires no additional type annotations. DDuo can be implemented as a library for existing programming languages; we present a reference implementation in Python which features moderate runtime overheads on realistic workloads. We include support for several data types, distance metrics and operations which are commonly used in modern machine learning programs. We also provide initial support for tracking the sensitivity of data transformations in popular Python libraries for data analysis. We formalize the novel core of the DDuo system and prove it sound for sensitivity analysis via a logical relation for metric preservation. We also illustrate DDuo's usability and flexibility through various case studies which implement state-of-the-art machine learning algorithms.
Privacy Increase in VLC System Based on Hyperchaotic Map. 2021 Telecoms Conference (Conf℡E). :1—4.
.
2021. Visible light communications (VLC) have been the focus of many recent investigations due to its potential for transmitting data at a higher bitrate than conventional communication systems. Alongside the advantages of being energy efficient through the use of LEDs (Light Emitting Diodes), it is imperative that these systems also take in consideration privacy and security measures available. This work highlights the technical aspects of a typical 16-QAM (Quadrature Amplitude Modulation) VLC system incorporating an enhanced privacy feature using an hyperchaotic map to scramble the symbols. The results obtained in this study showed a low dispersion symbol constellation while communicating at 100 Baud and with a 1 m link. Using the measured EVM (Error Vector Magnitude) of the constellation, the BER (Bit Error Rate) of this system was estimated to be bellow 10−12 which is lower than the threshold limit of 3.8.10−3 that corresponds to the 7% hard-decision forward error correction (HD- FEC) for optimal transmission, showing that this technique can be implemented with higher bitrates and with a higher modulation index.
An Approach to Identifying the Type of Uncertainty of Initial Information Based on the Theory of Fuzzy Logic. 2021 XXIV International Conference on Soft Computing and Measurements (SCM). :150—153.
.
2021. The article discusses an approach to identifying the uncertainty of initial information based on the theory of fuzzy logic. A system of criteria for initial information is proposed, calculated on the basis of the input sample, and characterizing the measure of uncertainty present in the system. The basic requirements for the choice of membership functions of the fuzzy inference system are indicated and the final integrated output membership function is obtained, which describes the type of uncertainty of the initial information.
On the Security of Authenticated Key Agreement Scheme for Fog-driven IoT Healthcare System. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1760—1765.
.
2021. The convergence of Internet of Things (IoT) and cloud computing is due to the practical necessity for providing broader services to extensive user in distinct environments. However, cloud computing has numerous constraints for applications that require high-mobility and high latency, notably in adversarial situations (e.g. battlefields). These limitations can be elevated to some extent, in a fog computing model because it covers the gap between remote data-center and edge device. Since, the fog nodes are usually installed in remote areas, therefore, they impose the design of fool proof safety solution for a fog-based setting. Thus, to ensure the security and privacy of fog-based environment, numerous schemes have been developed by researchers. In the recent past, Jia et al. (Wireless Networks, DOI: 10.1007/s11276-018-1759-3) designed a fog-based three-party scheme for healthcare system using bilinear. They claim that their scheme can withstand common security attacks. However, in this work we investigated their scheme and show that their scheme has different susceptibilities such as revealing of secret parameters, and fog node impersonation attack. Moreover, it lacks the anonymity of user anonymity and has inefficient login phase. Consequently, we have suggestion with some necessary guidelines for attack resilience that are unheeded by Jia et al.
Scheduling Real Tim Security Aware Tasks in Fog Networks. 2021 IEEE World Congress on Services (SERVICES). :6—6.
.
2021. Fog computing extends the capability of cloud services to support latency sensitive applications. Adding fog computing nodes in proximity to a data generation/ actuation source can support data analysis tasks that have stringent deadline constraints. We introduce a real time, security-aware scheduling algorithm that can execute over a fog environment [1 , 2] . The applications we consider comprise of: (i) interactive applications which are less compute intensive, but require faster response time; (ii) computationally intensive batch applications which can tolerate some delay in execution. From a security perspective, applications are divided into three categories: public, private and semi-private which must be hosted over trusted, semi-trusted and untrusted resources. We propose the architecture and implementation of a distributed orchestrator for fog computing, able to combine task requirements (both performance and security) and resource properties.