Jain, Ashima, Tripathi, Khushboo, Jatain, Aman, Chaudhary, Manju.
2022.
A Game Theory based Attacker Defender Model for IDS in Cloud Security. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :190–194.
Cloud security has become a serious challenge due to increasing number of attacks day-by-day. Intrusion Detection System (IDS) requires an efficient security model for improving security in the cloud. This paper proposes a game theory based model, named as Game Theory Cloud Security Deep Neural Network (GT-CSDNN) for security in cloud. The proposed model works with the Deep Neural Network (DNN) for classification of attack and normal data. The performance of the proposed model is evaluated with CICIDS-2018 dataset. The dataset is normalized and optimal points about normal and attack data are evaluated based on the Improved Whale Algorithm (IWA). The simulation results show that the proposed model exhibits improved performance as compared with existing techniques in terms of accuracy, precision, F-score, area under the curve, False Positive Rate (FPR) and detection rate.
Lotfollahi, Mahsa, Tran, Nguyen, Gajjela, Chalapathi, Berisha, Sebastian, Han, Zhu, Mayerich, David, Reddy, Rohith.
2022.
Adaptive Compressive Sampling for Mid-Infrared Spectroscopic Imaging. 2022 IEEE International Conference on Image Processing (ICIP). :2336–2340.
Mid-infrared spectroscopic imaging (MIRSI) is an emerging class of label-free, biochemically quantitative technologies targeting digital histopathology. Conventional histopathology relies on chemical stains that alter tissue color. This approach is qualitative, often making histopathologic examination subjective and difficult to quantify. MIRSI addresses these challenges through quantitative and repeatable imaging that leverages native molecular contrast. Fourier transform infrared (FTIR) imaging, the best-known MIRSI technology, has two challenges that have hindered its widespread adoption: data collection speed and spatial resolution. Recent technological breakthroughs, such as photothermal MIRSI, provide an order of magnitude improvement in spatial resolution. However, this comes at the cost of acquisition speed, which is impractical for clinical tissue samples. This paper introduces an adaptive compressive sampling technique to reduce hyperspectral data acquisition time by an order of magnitude by leveraging spectral and spatial sparsity. This method identifies the most informative spatial and spectral features, integrates a fast tensor completion algorithm to reconstruct megapixel-scale images, and demonstrates speed advantages over FTIR imaging while providing spatial resolutions comparable to new photothermal approaches.
ISSN: 2381-8549
Naik, Badavath Shravan, Tripathy, Somanath, Mohanty, Susil Kumar.
2022.
MuSigRDT: MultiSig Contract based Reliable Data Transmission in Social Internet of Vehicle. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :1763–1768.
Social Internet of Vehicle (SIoV) has emerged as one of the most promising applications for vehicle communication, which provides safe and comfortable driving experience. It reduces traffic jams and accidents, thereby saving public resources. However, the wrongly communicated messages would cause serious issues, including life threats. So it is essential to ensure the reliability of the message before acting on considering that. Existing works use cryptographic primitives like threshold authentication and ring signatures, which incurs huge computation and communication overheads, and the ring signature size grew linearly with the threshold value. Our objective is to keep the signature size constant regardless of the threshold value. This work proposes MuSigRDT, a multisignature contract based data transmission protocol using Schnorr digital signature. MuSigRDT provides incentives, to encourage the vehicles to share correct information in real-time and participate honestly in SIoV. MuSigRDT is shown to be secure under Universal Composability (UC) framework. The MuSigRDT contract is deployed on Ethereum's Rinkeby testnet.
Tang, Shibo, Wang, Xingxin, Gao, Yifei, Hu, Wei.
2022.
Accelerating SoC Security Verification and Vulnerability Detection Through Symbolic Execution. 2022 19th International SoC Design Conference (ISOCC). :207–208.
Model checking is one of the most commonly used technique in formal verification. However, the exponential scale state space renders exhaustive state enumeration inefficient even for a moderate System on Chip (SoC) design. In this paper, we propose a method that leverages symbolic execution to accelerate state space search and pinpoint security vulnerabilities. We automatically convert the hardware design to functionally equivalent C++ code and utilize the KLEE symbolic execution engine to perform state exploration through heuristic search. To reduce the search space, we symbolically represent essential input signals while making non-critical inputs concrete. Experiment results have demonstrated that our method can precisely identify security vulnerabilities at significantly lower computation cost.
Li, Zongjie, Ma, Pingchuan, Wang, Huaijin, Wang, Shuai, Tang, Qiyi, Nie, Sen, Wu, Shi.
2022.
Unleashing the Power of Compiler Intermediate Representation to Enhance Neural Program Embeddings. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :2253–2265.
Neural program embeddings have demonstrated considerable promise in a range of program analysis tasks, including clone identification, program repair, code completion, and program synthesis. However, most existing methods generate neural program embeddings di-rectly from the program source codes, by learning from features such as tokens, abstract syntax trees, and control flow graphs. This paper takes a fresh look at how to improve program embed-dings by leveraging compiler intermediate representation (IR). We first demonstrate simple yet highly effective methods for enhancing embedding quality by training embedding models alongside source code and LLVM IR generated by default optimization levels (e.g., -02). We then introduce IRGEN, a framework based on genetic algorithms (GA), to identify (near-)optimal sequences of optimization flags that can significantly improve embedding quality. We use IRGEN to find optimal sequences of LLVM optimization flags by performing GA on source code datasets. We then extend a popular code embedding model, CodeCMR, by adding a new objective based on triplet loss to enable a joint learning over source code and LLVM IR. We benchmark the quality of embedding using a rep-resentative downstream application, code clone detection. When CodeCMR was trained with source code and LLVM IRs optimized by findings of IRGEN, the embedding quality was significantly im-proved, outperforming the state-of-the-art model, CodeBERT, which was trained only with source code. Our augmented CodeCMR also outperformed CodeCMR trained over source code and IR optimized with default optimization levels. We investigate the properties of optimization flags that increase embedding quality, demonstrate IRGEN's generalization in boosting other embedding models, and establish IRGEN's use in settings with extremely limited training data. Our research and findings demonstrate that a straightforward addition to modern neural code embedding models can provide a highly effective enhancement.
Tashman, Deemah H., Hamouda, Walaa.
2022.
Towards Improving the Security of Cognitive Radio Networks-Based Energy Harvesting. ICC 2022 - IEEE International Conference on Communications. :3436–3441.
In this paper, physical-layer security (PLS) of an underlay cognitive radio network (CRN) operating over cascaded Rayleigh fading channels is examined. In this scenario, a secondary user (SU) transmitter communicates with a SU receiver through a cascaded Rayleigh fading channel while being exposed to eavesdroppers. By harvesting energy from the SU transmitter, a cooperating jammer attempts to ensure the privacy of the transmitted communications. That is, this harvested energy is utilized to generate and spread jamming signals to baffle the information interception at eavesdroppers. Additionally, two scenarios are examined depending on the manner in which eavesdroppers intercept messages; colluding and non-colluding eavesdroppers. These scenarios are compared to determine which poses the greatest risk to the network. Furthermore, the channel cascade effect on security is investigated. Distances between users and the density of non-colluding eavesdroppers are also investigated. Moreover, cooperative jamming-based energy harvesting effectiveness is demonstrated.
Joon, Ranjita, Tomar, Parul.
2022.
Cognitive Radio Wireless Sensor Networks: A Survey. 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT). :216–222.
There has been a significant rise in the use of wireless sensor networks (WSNs) in the past few years. It is evident that WSNs operate in unlicensed spectrum bands [1]. But due to the increasing usage in unlicensed spectrum band this band is getting overcrowded. The recent development of cognitive radio technology [2, 3] has made possible the utilization of licensed spectrum band in an opportunistic manner. This paper studies an introduction to Cognitive Radio Technology, Cognitive Radio Wireless Sensor Networks, its Advantages & Challenges, Cognitive Radio Technology Applications and a comparative analysis of node clustering techniques in CWSN.