Biblio
Smart Transportation applications by nature are examples of Vehicular Ad-hoc Network (VANETs) applications where mobile vehicles, roadside units and transportation infrastructure interplay with one another to provide value added services. While there are abundant researches that focused on the communication aspect of such Mobile Ad-hoc Networks, there are few research bodies that target the development of VANET applications. Among the popular VANET applications, a dominant direction is to leverage Cloud infrastructure to execute and deliver applications and services. Recent studies showed that Cloud Computing is not sufficient for many VANET applications due to the mobility of vehicles and the latency sensitive requirements they impose. To this end, Fog Computing has been proposed to leverage computation infrastructure that is closer to the network edge to compliment Cloud Computing in providing latency-sensitive applications and services. However, applications development in Fog environment is much more challenging than in the Cloud due to the distributed nature of Fog systems. In this paper, we investigate how Smart Transportation applications are developed following Fog Computing approach, their challenges and possible mitigation from the state of the arts.