Visible to the public Biblio

Filters: Author is Sun, Shi-Feng  [Clear All Filters]
2019-08-05
Sun, Shi-Feng, Yuan, Xingliang, Liu, Joseph K., Steinfeld, Ron, Sakzad, Amin, Vo, Viet, Nepal, Surya.  2018.  Practical Backward-Secure Searchable Encryption from Symmetric Puncturable Encryption. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :763-780.

Symmetric Searchable Encryption (SSE) has received wide attention due to its practical application in searching on encrypted data. Beyond search, data addition and deletion are also supported in dynamic SSE schemes. Unfortunately, these update operations leak some information of updated data. To address this issue, forward-secure SSE is actively explored to protect the relations of newly updated data and previously searched keywords. On the contrary, little work has been done in backward security, which enforces that search should not reveal information of deleted data. In this paper, we propose the first practical and non-interactive backward-secure SSE scheme. In particular, we introduce a new form of symmetric encryption, named symmetric puncturable encryption (SPE), and construct a generic primitive from simple cryptographic tools. Based on this primitive, we then present a backward-secure SSE scheme that can revoke a server's searching ability on deleted data. We instantiate our scheme with a practical puncturable pseudorandom function and implement it on a large dataset. The experimental results demonstrate its efficiency and scalability. Compared to the state-of-the-art, our scheme achieves a speedup of almost 50x in search latency, and a saving of 62% in server storage consumption.

2019-02-13
Lai, Shangqi, Patranabis, Sikhar, Sakzad, Amin, Liu, Joseph K., Mukhopadhyay, Debdeep, Steinfeld, Ron, Sun, Shi-Feng, Liu, Dongxi, Zuo, Cong.  2018.  Result Pattern Hiding Searchable Encryption for Conjunctive Queries. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :745–762.

The recently proposed Oblivious Cross-Tags (OXT) protocol (CRYPTO 2013) has broken new ground in designing efficient searchable symmetric encryption (SSE) protocol with support for conjunctive keyword search in a single-writer single-reader framework. While the OXT protocol offers high performance by adopting a number of specialised data-structures, it also trades-off security by leaking 'partial' database information to the server. Recent attacks have exploited similar partial information leakage to breach database confidentiality. Consequently, it is an open problem to design SSE protocols that plug such leakages while retaining similar efficiency. In this paper, we propose a new SSE protocol, called Hidden Cross-Tags (HXT), that removes 'Keyword Pair Result Pattern' (KPRP) leakage for conjunctive keyword search. We avoid this leakage by adopting two additional cryptographic primitives - Hidden Vector Encryption (HVE) and probabilistic (Bloom filter) indexing into the HXT protocol. We propose a 'lightweight' HVE scheme that only uses efficient symmetric-key building blocks, and entirely avoids elliptic curve-based operations. At the same time, it affords selective simulation-security against an unbounded number of secret-key queries. Adopting this efficient HVE scheme, the overall practical storage and computational overheads of HXT over OXT are relatively small (no more than 10% for two keywords query, and 21% for six keywords query), while providing a higher level of security.

2017-10-04
Sun, Shi-Feng, Gu, Dawu, Liu, Joseph K., Parampalli, Udaya, Yuen, Tsz Hon.  2016.  Efficient Construction of Completely Non-Malleable CCA Secure Public Key Encryption. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :901–906.
Non-malleability is an important and intensively studied security notion for many cryptographic primitives. In the context of public key encryption, this notion means it is infeasible for an adversary to transform an encryption of some message m into one of a related message m' under the given public key. Although it has provided a strong security property for many applications, it still does not suffice for some scenarios like the system where the users could issue keys on-the-fly. In such settings, the adversary may have the power to transform the given public key and the ciphertext. To withstand such attacks, Fischlin introduced a stronger notion, known as complete non-malleability, which requires that the non-malleability property be preserved even for the adversaries attempting to produce a ciphertext of some related message under the transformed public key. To date, many schemes satisfying this stronger security have been proposed, but they are either inefficient or proved secure in the random oracle model. In this work, we put forward a new encryption scheme in the common reference string model. Based on the standard DBDH assumption, the proposed scheme is proved completely non-malleable secure against adaptive chosen ciphertext attacks in the standard model. In our scheme, the well-formed public keys and ciphertexts could be publicly recognized without drawing support from unwieldy techniques like non-interactive zero knowledge proofs or one-time signatures, thus achieving a better performance.
2017-08-18
Sun, Shi-Feng, Gu, Dawu, Liu, Joseph K., Parampalli, Udaya, Yuen, Tsz Hon.  2016.  Efficient Construction of Completely Non-Malleable CCA Secure Public Key Encryption. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :901–906.

Non-malleability is an important and intensively studied security notion for many cryptographic primitives. In the context of public key encryption, this notion means it is infeasible for an adversary to transform an encryption of some message m into one of a related message m' under the given public key. Although it has provided a strong security property for many applications, it still does not suffice for some scenarios like the system where the users could issue keys on-the-fly. In such settings, the adversary may have the power to transform the given public key and the ciphertext. To withstand such attacks, Fischlin introduced a stronger notion, known as complete non-malleability, which requires that the non-malleability property be preserved even for the adversaries attempting to produce a ciphertext of some related message under the transformed public key. To date, many schemes satisfying this stronger security have been proposed, but they are either inefficient or proved secure in the random oracle model. In this work, we put forward a new encryption scheme in the common reference string model. Based on the standard DBDH assumption, the proposed scheme is proved completely non-malleable secure against adaptive chosen ciphertext attacks in the standard model. In our scheme, the well-formed public keys and ciphertexts could be publicly recognized without drawing support from unwieldy techniques like non-interactive zero knowledge proofs or one-time signatures, thus achieving a better performance.