Biblio
For industrial control systems, ensuring the software integrity of their devices is a key security requirement. A pure software-based attestation solution is highly desirable for protecting legacy field devices that lack hardware root of trust (e.g., Trusted Platform Module). However, for the large population of field devices with ARM processors, existing software-based attestation schemes either incur long attestation time or are insecure. In this paper, we design a novel memory stride technique that significantly reduces the attestation time while remaining secure against known attacks and their advanced variants on ARM platform. We analyze the scheme's security and performance based on the formal framework proposed by Armknecht et al. [7] (with a necessary change to ensure its applicability in practical settings). We also implement memory stride on two models of real-world power grid devices that are widely deployed today, and demonstrate its superior performance.
Electrical substations are crucial for power grids. A number of international standards, such as IEC 60870 and 61850, have emerged to enable remote and automated control over substations. However, owing to insufficient security consideration in their design and implementation, the resulting systems could be vulnerable to cyber attacks. As a result, the modernization of a large number of substations dramatically increases the scale of potential damage successful attacks can cause on power grids. To counter such a risk, one promising direction is to design and deploy an additional layer of defense at the substations. However, it remains a challenge to evaluate various substation cybersecurity solutions in a realistic environment. In this paper, we present the design and implementation of SoftGrid, a software-based smart grid testbed for evaluating the effectiveness, performance, and interoperability of various security solutions implemented to protect the remote control interface of substations. We demonstrate the capability and usefulness of SoftGrid through a concrete case study. We plan to open-source SoftGrid to facilitate security research in related areas.