Visible to the public Biblio

Found 377 results

Filters: Keyword is invasive software  [Clear All Filters]
2017-03-07
Wang, P., Lin, W. H., Chao, W. J., Chao, K. M., Lo, C. C..  2015.  Using Dynamic Taint Approach for Malware Threat. 2015 IEEE 12th International Conference on e-Business Engineering. :408–416.

Most existing approaches focus on examining the values are dangerous for information flow within inter-suspicious modules of cloud applications (apps) in a host by using malware threat analysis, rather than the risk posed by suspicious apps were connected to the cloud computing server. Accordingly, this paper proposes a taint propagation analysis model incorporating a weighted spanning tree analysis scheme to track data with taint marking using several taint checking tools. In the proposed model, Android programs perform dynamic taint propagation to analyse the spread of and risks posed by suspicious apps were connected to the cloud computing server. In determining the risk of taint propagation, risk and defence capability are used for each taint path for assisting a defender in recognising the attack results against network threats caused by malware infection and estimate the losses of associated taint sources. Finally, a case of threat analysis of a typical cyber security attack is presented to demonstrate the proposed approach. Our approach verified the details of an attack sequence for malware infection by incorporating a finite state machine (FSM) to appropriately reflect the real situations at various configuration settings and safeguard deployment. The experimental results proved that the threat analysis model allows a defender to convert the spread of taint propagation to loss and practically estimate the risk of a specific threat by using behavioural analysis with real malware infection.

Lin, C. H., Tien, C. W., Chen, C. W., Tien, C. W., Pao, H. K..  2015.  Efficient spear-phishing threat detection using hypervisor monitor. 2015 International Carnahan Conference on Security Technology (ICCST). :299–303.

In recent years, cyber security threats have become increasingly dangerous. Hackers have fabricated fake emails to spoof specific users into clicking on malicious attachments or URL links in them. This kind of threat is called a spear-phishing attack. Because spear-phishing attacks use unknown exploits to trigger malicious activities, it is difficult to effectively defend against them. Thus, this study focuses on the challenges faced, and we develop a Cloud-threat Inspection Appliance (CIA) system to defend against spear-phishing threats. With the advantages of hardware-assisted virtualization technology, we use the CIA to develop a transparent hypervisor monitor that conceals the presence of the detection engine in the hypervisor kernel. In addition, the CIA also designs a document pre-filtering algorithm to enhance system performance. By inspecting PDF format structures, the proposed CIA was able to filter 77% of PDF attachments and prevent them from all being sent into the hypervisor monitor for deeper analysis. Finally, we tested CIA in real-world scenarios. The hypervisor monitor was shown to be a better anti-evasion sandbox than commercial ones. During 2014, CIA inspected 780,000 mails in a company with 200 user accounts, and found 65 unknown samples that were not detected by commercial anti-virus software.

Burnap, P., Javed, A., Rana, O. F., Awan, M. S..  2015.  Real-time classification of malicious URLs on Twitter using machine activity data. 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :970–977.

Massive online social networks with hundreds of millions of active users are increasingly being used by Cyber criminals to spread malicious software (malware) to exploit vulnerabilities on the machines of users for personal gain. Twitter is particularly susceptible to such activity as, with its 140 character limit, it is common for people to include URLs in their tweets to link to more detailed information, evidence, news reports and so on. URLs are often shortened so the endpoint is not obvious before a person clicks the link. Cyber criminals can exploit this to propagate malicious URLs on Twitter, for which the endpoint is a malicious server that performs unwanted actions on the person's machine. This is known as a drive-by-download. In this paper we develop a machine classification system to distinguish between malicious and benign URLs within seconds of the URL being clicked (i.e. `real-time'). We train the classifier using machine activity logs created while interacting with URLs extracted from Twitter data collected during a large global event - the Superbowl - and test it using data from another large sporting event - the Cricket World Cup. The results show that machine activity logs produce precision performances of up to 0.975 on training data from the first event and 0.747 on a test data from a second event. Furthermore, we examine the properties of the learned model to explain the relationship between machine activity and malicious software behaviour, and build a learning curve for the classifier to illustrate that very small samples of training data can be used with only a small detriment to performance.

Jadhav, S., Dutia, S., Calangutkar, K., Oh, T., Kim, Y. H., Kim, J. N..  2015.  Cloud-based Android botnet malware detection system. 2015 17th International Conference on Advanced Communication Technology (ICACT). :347–352.

Increased use of Android devices and its open source development framework has attracted many digital crime groups to use Android devices as one of the key attack surfaces. Due to the extensive connectivity and multiple sources of network connections, Android devices are most suitable to botnet based malware attacks. The research focuses on developing a cloud-based Android botnet malware detection system. A prototype of the proposed system is deployed which provides a runtime Android malware analysis. The paper explains architectural implementation of the developed system using a botnet detection learning dataset and multi-layered algorithm used to predict botnet family of a particular application.

Lakhita, Yadav, S., Bohra, B., Pooja.  2015.  A review on recent phishing attacks in Internet. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT). :1312–1315.

The development of internet comes with the other domain that is cyber-crime. The record and intelligently can be exposed to a user of illegal activity so that it has become important to make the technology reliable. Phishing techniques include domain of email messages. Phishing emails have hosted such a phishing website, where a click on the URL or the malware code as executing some actions to perform is socially engineered messages. Lexically analyzing the URLs can enhance the performance and help to differentiate between the original email and the phishing URL. As assessed in this study, in addition to textual analysis of phishing URL, email classification is successful and results in a highly precise anti phishing.

Kao, D. Y., Wu, G. J..  2015.  A Digital Triage Forensics framework of Window malware forensic toolkit: Based on ISO}/IEC 27037:2012. 2015 International Carnahan Conference on Security Technology (ICCST). :217–222.

The rise of malware attack and data leakage is putting the Internet at a higher risk. Digital forensic examiners responsible for cyber security incident need to continually update their processes, knowledge and tools due to changing technology. These attack activities can be investigated by means of Digital Triage Forensics (DTF) methodologies. DTF is a procedural model for the crime scene investigation of digital forensic applications. It takes place as a way of gathering quick intelligence, and presents methods of conducting pre/post-blast investigations. A DTF framework of Window malware forensic toolkit is further proposed. It is also based on ISO/IEC 27037: 2012 - guidelines for specific activities in the handling of digital evidence. The argument is made for a careful use of digital forensic investigations to improve the overall quality of expert examiners. This solution may improve the speed and quality of pre/post-blast investigations. By considering how triage solutions are being implemented into digital investigations, this study presents a critical analysis of malware forensics. The analysis serves as feedback for integrating digital forensic considerations, and specifies directions for further standardization efforts.

2017-02-14
B. Gu, Y. Fang, P. Jia, L. Liu, L. Zhang, M. Wang.  2015.  "A New Static Detection Method of Malicious Document Based on Wavelet Package Analysis". 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP). :333-336.

More and more advanced persistent threat attacks has happened since 2009. This kind of attacks usually use more than one zero-day exploit to achieve its goal. Most of the times, the target computer will execute malicious program after the user open an infected compound document. The original detection method becomes inefficient as the attackers using a zero-day exploit to structure these compound documents. Inspired by the detection method based on structural entropy, we apply wavelet analysis to malicious document detection system. In our research, we use wavelet analysis to extract features from the raw data. These features will be used todetect whether the compound document was embed malicious code.

M. Grottke, A. Avritzer, D. S. Menasché, J. Alonso, L. Aguiar, S. G. Alvarez.  2015.  "WAP: Models and metrics for the assessment of critical-infrastructure-targeted malware campaigns". 2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE). :330-335.

Ensuring system survivability in the wake of advanced persistent threats is a big challenge that the security community is facing to ensure critical infrastructure protection. In this paper, we define metrics and models for the assessment of coordinated massive malware campaigns targeting critical infrastructure sectors. First, we develop an analytical model that allows us to capture the effect of neighborhood on different metrics (infection probability and contagion probability). Then, we assess the impact of putting operational but possibly infected nodes into quarantine. Finally, we study the implications of scanning nodes for early detection of malware (e.g., worms), accounting for false positives and false negatives. Evaluating our methodology using a small four-node topology, we find that malware infections can be effectively contained by using quarantine and appropriate rates of scanning for soft impacts.

A. K. M. A., J. C. D..  2015.  "Execution Time Measurement of Virtual Machine Volatile Artifacts Analyzers". 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS). :314-319.

Due to a rapid revaluation in a virtualization environment, Virtual Machines (VMs) are target point for an attacker to gain privileged access of the virtual infrastructure. The Advanced Persistent Threats (APTs) such as malware, rootkit, spyware, etc. are more potent to bypass the existing defense mechanisms designed for VM. To address this issue, Virtual Machine Introspection (VMI) emerged as a promising approach that monitors run state of the VM externally from hypervisor. However, limitation of VMI lies with semantic gap. An open source tool called LibVMI address the semantic gap. Memory Forensic Analysis (MFA) tool such as Volatility can also be used to address the semantic gap. But, it needs to capture a memory dump (RAM) as input. Memory dump acquires time and its analysis time is highly crucial if Intrusion Detection System IDS (IDS) depends on the data supplied by FAM or VMI tool. In this work, live virtual machine RAM dump acquire time of LibVMI is measured. In addition, captured memory dump analysis time consumed by Volatility is measured and compared with other memory analyzer such as Rekall. It is observed through experimental results that, Rekall takes more execution time as compared to Volatility for most of the plugins. Further, Volatility and Rekall are compared with LibVMI. It is noticed that examining the volatile data through LibVMI is faster as it eliminates memory dump acquire time.

K. F. Hong, C. C. Chen, Y. T. Chiu, K. S. Chou.  2015.  "Scalable command and control detection in log data through UF-ICF analysis". 2015 International Carnahan Conference on Security Technology (ICCST). :293-298.

During an advanced persistent threat (APT), an attacker group usually establish more than one C&C server and these C&C servers will change their domain names and corresponding IP addresses over time to be unseen by anti-virus software or intrusion prevention systems. For this reason, discovering and catching C&C sites becomes a big challenge in information security. Based on our observations and deductions, a malware tends to contain a fixed user agent string, and the connection behaviors generated by a malware is different from that by a benign service or a normal user. This paper proposed a new method comprising filtering and clustering methods to detect C&C servers with a relatively higher coverage rate. The experiments revealed that the proposed method can successfully detect C&C Servers, and the can provide an important clue for detecting APT.

N. Nakagawa, Y. Teshigawara, R. Sasaki.  2015.  "Development of a Detection and Responding System for Malware Communications by Using OpenFlow and Its Evaluation". 2015 Fourth International Conference on Cyber Security, Cyber Warfare, and Digital Forensic (CyberSec). :46-51.

Advanced Persistent Threat (APT) attacks, which have become prevalent in recent years, are classified into four phases. These are initial compromise phase, attacking infrastructure building phase, penetration and exploration phase, and mission execution phase. The malware on infected terminals attempts various communications on and after the attacking infrastructure building phase. In this research, using OpenFlow technology for virtual networks, we developed a system of identifying infected terminals by detecting communication events of malware communications in APT attacks. In addition, we prevent information fraud by using OpenFlow, which works as real-time path control. To evaluate our system, we executed malware infection experiments with a simulation tool for APT attacks and malware samples. In these experiments, an existing network using only entry control measures was prepared. As a result, we confirm the developed system is effective.

A. Oprea, Z. Li, T. F. Yen, S. H. Chin, S. Alrwais.  2015.  "Detection of Early-Stage Enterprise Infection by Mining Large-Scale Log Data". 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. :45-56.

Recent years have seen the rise of sophisticated attacks including advanced persistent threats (APT) which pose severe risks to organizations and governments. Additionally, new malware strains appear at a higher rate than ever before. Since many of these malware evade existing security products, traditional defenses deployed by enterprises today often fail at detecting infections at an early stage. We address the problem of detecting early-stage APT infection by proposing a new framework based on belief propagation inspired from graph theory. We demonstrate that our techniques perform well on two large datasets. We achieve high accuracy on two months of DNS logs released by Los Alamos National Lab (LANL), which include APT infection attacks simulated by LANL domain experts. We also apply our algorithms to 38TB of web proxy logs collected at the border of a large enterprise and identify hundreds of malicious domains overlooked by state-of-the-art security products.

S. Zafar, M. B. Tiwana.  2015.  "Discarded hard disks ??? A treasure trove for cybercriminals: A case study of recovered sensitive data from a discarded hard disk" 2015 First International Conference on Anti-Cybercrime (ICACC). :1-6.

The modern malware poses serious security threats because of its evolved capability of using staged and persistent attack while remaining undetected over a long period of time to perform a number of malicious activities. The challenge for malicious actors is to gain initial control of the victim's machine by bypassing all the security controls. The most favored bait often used by attackers is to deceive users through a trusting or interesting email containing a malicious attachment or a malicious link. To make the email credible and interesting the cybercriminals often perform reconnaissance activities to find background information on the potential target. To this end, the value of information found on the discarded or stolen storage devices is often underestimated or ignored. In this paper, we present the partial results of analysis of one such hard disk that was purchased from the open market. The data found on the disk contained highly sensitive personal and organizational data. The results from the case study will be useful in not only understanding the involved risk but also creating awareness of related threats.

C. H. Hsieh, C. M. Lai, C. H. Mao, T. C. Kao, K. C. Lee.  2015.  "AD2: Anomaly detection on active directory log data for insider threat monitoring". 2015 International Carnahan Conference on Security Technology (ICCST). :287-292.

What you see is not definitely believable is not a rare case in the cyber security monitoring. However, due to various tricks of camouflages, such as packing or virutal private network (VPN), detecting "advanced persistent threat"(APT) by only signature based malware detection system becomes more and more intractable. On the other hand, by carefully modeling users' subsequent behaviors of daily routines, probability for one account to generate certain operations can be estimated and used in anomaly detection. To the best of our knowledge so far, a novel behavioral analytic framework, which is dedicated to analyze Active Directory domain service logs and to monitor potential inside threat, is now first proposed in this project. Experiments on real dataset not only show that the proposed idea indeed explores a new feasible direction for cyber security monitoring, but also gives a guideline on how to deploy this framework to various environments.

K. P. B. Anushka, Chamantha, A. P. Karunaweera, P. R. Priyashantha, H. D. R. Wickramasinghe, W. A. V. M. G. Wijethunge.  2015.  "Case study on exploitation, detection and prevention of user account DoS through Advanced Persistent Threats". 2015 Fifteenth International Conference on Advances in ICT for Emerging Regions (ICTer). :190-194.

Security analysts implement various security mechanisms to protect systems from attackers. Even though these mechanisms try to secure systems, a talented attacker may use these same techniques to launch a sophisticated attack. This paper discuss about such an attack called as user account Denial of Service (DoS) where an attacker uses user account lockout features of the application to lockout all user accounts causing an enterprise wide DoS. The attack has being simulated usingastealthy attack mechanism called as Advanced Persistent Threats (APT) using a XMPP based botnet. Through the simulation, researchers discuss about the patterns associated with the attack which can be used to detect the attack in real time and how the attack can be prevented from the perspective of developers, system engineers and security analysts.

K. F. Hong, C. C. Chen, Y. T. Chiu, K. S. Chou.  2015.  "Ctracer: Uncover C amp;amp;C in Advanced Persistent Threats Based on Scalable Framework for Enterprise Log Data". 2015 IEEE International Congress on Big Data. :551-558.

Advanced Persistent Threat (APT), unlike traditional hacking attempts, carries out specific attacks on a specific target to illegally collect information and data from it. These targeted attacks use special-crafted malware and infrequent activity to avoid detection, so that hackers can retain control over target systems unnoticed for long periods of time. In order to detect these stealthy activities, a large-volume of traffic data generated in a period of time has to be analyzed. We proposed a scalable solution, Ctracer to detect stealthy command and control channel in a large-volume of traffic data. APT uses multiple command and control (C&C) channel and change them frequently to avoid detection, but there are common signatures in those C&C sessions. By identifying common network signature, Ctracer is able to group the C&C sessions. Therefore, we can detect an APT and all the C&C session used in an APT attack. The Ctracer is evaluated in a large enterprise for four months, twenty C&C servers, three APT attacks are reported. After investigated by the enterprise's Security Operations Center (SOC), the forensic report shows that there is specific enterprise targeted APT cases and not ever discovered for over 120 days.

G. G. Granadillo, J. Garcia-Alfaro, H. Debar, C. Ponchel, L. R. Martin.  2015.  "Considering technical and financial impact in the selection of security countermeasures against Advanced Persistent Threats (APTs)". 2015 7th International Conference on New Technologies, Mobility and Security (NTMS). :1-6.

This paper presents a model to evaluate and select security countermeasures from a pool of candidates. The model performs industrial evaluation and simulations of the financial and technical impact associated to security countermeasures. The financial impact approach uses the Return On Response Investment (RORI) index to compare the expected impact of the attack when no response is enacted against the impact after applying security countermeasures. The technical impact approach evaluates the protection level against a threat, in terms of confidentiality, integrity, and availability. We provide a use case on malware attacks that shows the applicability of our model in selecting the best countermeasure against an Advanced Persistent Threat.

2015-05-06
Kaur, R., Singh, M..  2014.  A Survey on Zero-Day Polymorphic Worm Detection Techniques. Communications Surveys Tutorials, IEEE. 16:1520-1549.

Zero-day polymorphic worms pose a serious threat to the Internet security. With their ability to rapidly propagate, these worms increasingly threaten the Internet hosts and services. Not only can they exploit unknown vulnerabilities but can also change their own representations on each new infection or can encrypt their payloads using a different key per infection. They have many variations in the signatures of the same worm thus, making their fingerprinting very difficult. Therefore, signature-based defenses and traditional security layers miss these stealthy and persistent threats. This paper provides a detailed survey to outline the research efforts in relation to detection of modern zero-day malware in form of zero-day polymorphic worms.

Pandey, S.K., Mehtre, B.M..  2014.  A Lifecycle Based Approach for Malware Analysis. Communication Systems and Network Technologies (CSNT), 2014 Fourth International Conference on. :767-771.

Most of the detection approaches like Signature based, Anomaly based and Specification based are not able to analyze and detect all types of malware. Signature-based approach for malware detection has one major drawback that it cannot detect zero-day attacks. The fundamental limitation of anomaly based approach is its high false alarm rate. And specification-based detection often has difficulty to specify completely and accurately the entire set of valid behaviors a malware should exhibit. Modern malware developers try to avoid detection by using several techniques such as polymorphic, metamorphic and also some of the hiding techniques. In order to overcome these issues, we propose a new approach for malware analysis and detection that consist of the following twelve stages Inbound Scan, Inbound Attack, Spontaneous Attack, Client-Side Exploit, Egg Download, Device Infection, Local Reconnaissance, Network Surveillance, & Communications, Peer Coordination, Attack Preparation, and Malicious Outbound Propagation. These all stages will integrate together as interrelated process in our proposed approach. This approach had solved the limitations of all the three approaches by monitoring the behavioral activity of malware at each any every stage of life cycle and then finally it will give a report of the maliciousness of the files or software's.

Bou-Harb, E., Debbabi, M., Assi, C..  2014.  Behavioral analytics for inferring large-scale orchestrated probing events. Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on. :506-511.

The significant dependence on cyberspace has indeed brought new risks that often compromise, exploit and damage invaluable data and systems. Thus, the capability to proactively infer malicious activities is of paramount importance. In this context, inferring probing events, which are commonly the first stage of any cyber attack, render a promising tactic to achieve that task. We have been receiving for the past three years 12 GB of daily malicious real darknet data (i.e., Internet traffic destined to half a million routable yet unallocated IP addresses) from more than 12 countries. This paper exploits such data to propose a novel approach that aims at capturing the behavior of the probing sources in an attempt to infer their orchestration (i.e., coordination) pattern. The latter defines a recently discovered characteristic of a new phenomenon of probing events that could be ominously leveraged to cause drastic Internet-wide and enterprise impacts as precursors of various cyber attacks. To accomplish its goals, the proposed approach leverages various signal and statistical techniques, information theoretical metrics, fuzzy approaches with real malware traffic and data mining methods. The approach is validated through one use case that arguably proves that a previously analyzed orchestrated probing event from last year is indeed still active, yet operating in a stealthy, very low rate mode. We envision that the proposed approach that is tailored towards darknet data, which is frequently, abundantly and effectively used to generate cyber threat intelligence, could be used by network security analysts, emergency response teams and/or observers of cyber events to infer large-scale orchestrated probing events for early cyber attack warning and notification.
 

Tsoutsos, N.G., Maniatakos, M..  2014.  Fabrication Attacks: Zero-Overhead Malicious Modifications Enabling Modern Microprocessor Privilege Escalation. Emerging Topics in Computing, IEEE Transactions on. 2:81-93.

The wide deployment of general purpose and embedded microprocessors has emphasized the need for defenses against cyber-attacks. Due to the globalized supply chain, however, there are several stages where a processor can be maliciously modified. The most promising stage, and the hardest during which to inject the hardware trojan, is the fabrication stage. As modern microprocessor chips are characterized by very dense, billion-transistor designs, such attacks must be very carefully crafted. In this paper, we demonstrate zero overhead malicious modifications on both high-performance and embedded microprocessors. These hardware trojans enable privilege escalation through execution of an instruction stream that excites the necessary conditions to make the modification appear. The minimal footprint, however, comes at the cost of a small window of attack opportunities. Experimental results show that malicious users can gain escalated privileges within a few million clock cycles. In addition, no system crashes were reported during normal operation, rendering the modifications transparent to the end user.
 

Boukhtouta, A., Lakhdari, N.-E., Debbabi, M..  2014.  Inferring Malware Family through Application Protocol Sequences Signature. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

The dazzling emergence of cyber-threats exert today's cyberspace, which needs practical and efficient capabilities for malware traffic detection. In this paper, we propose an extension to an initial research effort, namely, towards fingerprinting malicious traffic by putting an emphasis on the attribution of maliciousness to malware families. The proposed technique in the previous work establishes a synergy between automatic dynamic analysis of malware and machine learning to fingerprint badness in network traffic. Machine learning algorithms are used with features that exploit only high-level properties of traffic packets (e.g. packet headers). Besides, the detection of malicious packets, we want to enhance fingerprinting capability with the identification of malware families responsible in the generation of malicious packets. The identification of the underlying malware family is derived from a sequence of application protocols, which is used as a signature to the family in question. Furthermore, our results show that our technique achieves promising malware family identification rate with low false positives.

Sayed, B., Traore, I..  2014.  Protection against Web 2.0 Client-Side Web Attacks Using Information Flow Control. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :261-268.

The dynamic nature of the Web 2.0 and the heavy obfuscation of web-based attacks complicate the job of the traditional protection systems such as Firewalls, Anti-virus solutions, and IDS systems. It has been witnessed that using ready-made toolkits, cyber-criminals can launch sophisticated attacks such as cross-site scripting (XSS), cross-site request forgery (CSRF) and botnets to name a few. In recent years, cyber-criminals have targeted legitimate websites and social networks to inject malicious scripts that compromise the security of the visitors of such websites. This involves performing actions using the victim browser without his/her permission. This poses the need to develop effective mechanisms for protecting against Web 2.0 attacks that mainly target the end-user. In this paper, we address the above challenges from information flow control perspective by developing a framework that restricts the flow of information on the client-side to legitimate channels. The proposed model tracks sensitive information flow and prevents information leakage from happening. The proposed model when applied to the context of client-side web-based attacks is expected to provide a more secure browsing environment for the end-user.

Boukhtouta, A., Lakhdari, N.-E., Debbabi, M..  2014.  Inferring Malware Family through Application Protocol Sequences Signature. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

The dazzling emergence of cyber-threats exert today's cyberspace, which needs practical and efficient capabilities for malware traffic detection. In this paper, we propose an extension to an initial research effort, namely, towards fingerprinting malicious traffic by putting an emphasis on the attribution of maliciousness to malware families. The proposed technique in the previous work establishes a synergy between automatic dynamic analysis of malware and machine learning to fingerprint badness in network traffic. Machine learning algorithms are used with features that exploit only high-level properties of traffic packets (e.g. packet headers). Besides, the detection of malicious packets, we want to enhance fingerprinting capability with the identification of malware families responsible in the generation of malicious packets. The identification of the underlying malware family is derived from a sequence of application protocols, which is used as a signature to the family in question. Furthermore, our results show that our technique achieves promising malware family identification rate with low false positives.

Subramanyan, P., Tsiskaridze, N., Wenchao Li, Gascon, A., Wei Yang Tan, Tiwari, A., Shankar, N., Seshia, S.A., Malik, S..  2014.  Reverse Engineering Digital Circuits Using Structural and Functional Analyses. Emerging Topics in Computing, IEEE Transactions on. 2:63-80.

Integrated circuits (ICs) are now designed and fabricated in a globalized multivendor environment making them vulnerable to malicious design changes, the insertion of hardware Trojans/malware, and intellectual property (IP) theft. Algorithmic reverse engineering of digital circuits can mitigate these concerns by enabling analysts to detect malicious hardware, verify the integrity of ICs, and detect IP violations. In this paper, we present a set of algorithms for the reverse engineering of digital circuits starting from an unstructured netlist and resulting in a high-level netlist with components such as register files, counters, adders, and subtractors. Our techniques require no manual intervention and experiments show that they determine the functionality of >45% and up to 93% of the gates in each of the test circuits that we examine. We also demonstrate that our algorithms are scalable to real designs by experimenting with a very large, highly-optimized system-on-chip (SOC) design with over 375000 combinational elements. Our inference algorithms cover 68% of the gates in this SOC. We also demonstrate that our algorithms are effective in aiding a human analyst to detect hardware Trojans in an unstructured netlist.