Biblio
Malware has become sophisticated and organizations don't have a Plan B when standard lines of defense fail. These failures have devastating consequences for organizations, such as sensitive information being exfiltrated. A promising avenue for improving the effectiveness of behavioral-based malware detectors is to combine fast (usually not highly accurate) traditional machine learning (ML) detectors with high-accuracy, but time-consuming, deep learning (DL) models. The main idea is to place software receiving borderline classifications by traditional ML methods in an environment where uncertainty is added, while software is analyzed by time-consuming DL models. The goal of uncertainty is to rate-limit actions of potential malware during deep analysis. In this paper, we describe Chameleon, a Linux-based framework that implements this uncertain environment. Chameleon offers two environments for its OS processes: standard - for software identified as benign by traditional ML detectors - and uncertain - for software that received borderline classifications analyzed by ML methods. The uncertain environment will bring obstacles to software execution through random perturbations applied probabilistically on selected system calls. We evaluated Chameleon with 113 applications from common benchmarks and 100 malware samples for Linux. Our results show that at threshold 10%, intrusive and non-intrusive strategies caused approximately 65% of malware to fail accomplishing their tasks, while approximately 30% of the analyzed benign software to meet with various levels of disruption (crashed or hampered). We also found that I/O-bound software was three times more affected by uncertainty than CPU-bound software.
Malware classification is a critical part in the cyber-security. Traditional methodologies for the malware classification typically use static analysis and dynamic analysis to identify malware. In this paper, a malware classification methodology based on its binary image and extracting local binary pattern (LBP) features is proposed. First, malware images are reorganized into 3 by 3 grids which is mainly used to extract LBP feature. Second, the LBP is implemented on the malware images to extract features in that it is useful in pattern or texture classification. Finally, Tensorflow, a library for machine learning, is applied to classify malware images with the LBP feature. Performance comparison results among different classifiers with different image descriptors such as GIST, a spatial envelop, and the LBP demonstrate that our proposed approach outperforms others.
Distinguishing and classifying different types of malware is important to better understanding how they can infect computers and devices, the threat level they pose and how to protect against them. In this paper, a system for classifying malware programs is presented. The paper describes the architecture of the system and assesses its performance on a publicly available database (provided by Microsoft for the Microsoft Malware Classification Challenge BIG2015) to serve as a benchmark for future research efforts. First, the malicious programs are preprocessed such that they are visualized as gray scale images. We then make use of an architecture comprised of multiple layers (multiple levels of encoding) to carry out the classification process of those images/programs. We compare the performance of this approach against traditional machine learning and pattern recognition algorithms. Our experimental results show that the deep learning architecture yields a boost in performance over those conventional/standard algorithms. A hold-out validation analysis using the superior architecture shows an accuracy in the order of 99.15%.
Malware technology makes it difficult for malware analyst to detect same malware files with different obfuscation technique. In this paper we are trying to tackle that problem by analyzing the sequence of system call from an executable file. Malware files which actually are the same should have almost identical or at least a similar sequence of system calls. In this paper, we are going to create a model for each malware class consists of malwares from different families based on its sequence of system calls. Method/algorithm that's used in this paper is profile hidden markov model which is a very well-known tool in the biological informatics field for comparing DNA and protein sequences. Malware classes that we are going to build are trojan and worm class. Accuracy for these classes are pretty high, it's above 90% with also a high false positive rate around 37%.
Malware writers often develop malware with automated measures, so the number of malware has increased dramatically. Automated measures tend to repeatedly use significant modules, which form the basis for identifying malware variants and discriminating malware families. Thus, we propose a novel visualization analysis method for researching malware similarity. This method converts malicious Windows Portable Executable (PE) files into local entropy images for observing internal features of malware, and then normalizes local entropy images into entropy pixel images for malware classification. We take advantage of the Jaccard index to measure similarities between entropy pixel images and the k-Nearest Neighbor (kNN) classification algorithm to assign entropy pixel images to different malware families. Preliminary experimental results show that our visualization method can discriminate malware families effectively.
Malicious applications have become increasingly numerous. This demands adaptive, learning-based techniques for constructing malware detection engines, instead of the traditional manual-based strategies. Prior work in learning-based malware detection engines primarily focuses on dynamic trace analysis and byte-level n-grams. Our approach in this paper differs in that we use compiler intermediate representations, i.e., the callgraph representation of binaries. Using graph-based program representations for learning provides structure of the program, which can be used to learn more advanced patterns. We use the Shortest Path Graph Kernel (SPGK) to identify similarities between call graphs extracted from binaries. The output similarity matrix is fed into a Support Vector Machine (SVM) algorithm to construct highly-accurate models to predict whether a binary is malicious or not. However, SPGK is computationally expensive due to the size of the input graphs. Therefore, we evaluate different parallelization methods for CPUs and GPUs to speed up this kernel, allowing us to continuously construct up-to-date models in a timely manner. Our hybrid implementation, which leverages both CPU and GPU, yields the best performance, achieving up to a 14.2x improvement over our already optimized OpenMP version. We compared our generated graph-based models to previously state-of-the-art feature vector 2-gram and 3-gram models on a dataset consisting of over 22,000 binaries. We show that our classification accuracy using graphs is over 19% higher than either n-gram model and gives a false positive rate (FPR) of less than 0.1%. We are also able to consider large call graphs and dataset sizes because of the reduced execution time of our parallelized SPGK implementation.
As a vital component of variety cyber attacks, malicious domain detection becomes a hot topic for cyber security. Several recent techniques are proposed to identify malicious domains through analysis of DNS data because much of global information in DNS data which cannot be affected by the attackers. The attackers always recycle resources, so they frequently change the domain - IP resolutions and create new domains to avoid detection. Therefore, multiple malicious domains are hosted by the same IPs and multiple IPs also host same malicious domains in simultaneously, which create intrinsic association among them. Hence, using the labeled domains which can be traced back from queries history of all domains to verify and figure out the association of them all. Graphs seem the best candidate to represent for this relationship and there are many algorithms developed on graph with high performance. A graph-based interface can be developed and transformed to the graph mining task of inferring graph node's reputation scores using improvements of the belief propagation algorithm. Then higher reputation scores the nodes reveal, the more malicious probabilities they infer. For demonstration, this paper proposes a malicious domain detection technique and evaluates on a real-world dataset. The dataset is collected from DNS data servers which will be used for building a DNS graph. The proposed technique achieves high performance in accuracy rates over 98.3%, precision and recall rates as: 99.1%, 98.6%. Especially, with a small set of labeled domains (legitimate and malicious domains), the technique can discover a large set of potential malicious domains. The results indicate that the method is strongly effective in detecting malicious domains.
Due to the unavailability of signatures for previously unknown malware, non-signature malware detection schemes typically rely on analyzing program behavior. Prior behavior based non-signature malware detection schemes are either easily evadable by obfuscation or are very inefficient in terms of storage space and detection time. In this paper, we propose GZero, a graph theoretic approach fast and accurate non-signature malware detection at end hosts. GZero it is effective while being efficient in terms of both storage space and detection time. We conducted experiments on a large set of both benign software and malware. Our results show that GZero achieves more than 99% detection rate and a false positive rate of less than 1%, with less than 1 second of average scan time per program and is relatively robust to obfuscation attacks. Due to its low overheads, GZero can complement existing malware detection solutions at end hosts.
With growing popularity of Android, it's attack surface has also increased. Prevalence of third party android marketplaces gives attackers an opportunity to plant their malicious apps in the mobile eco-system. To evade signature based detection, attackers often transform their malware, for instance, by introducing code level changes. In this paper we propose a lightweight static Permission Flow Graph (PFG) based approach to detect malware even when they have been transformed (obfuscated). A number of techniques based on behavioral analysis have also been proposed in the past; how-ever our interest lies in leveraging the permission framework alone to detect malware variants and transformations without considering behavioral aspects of a malware. Our proposed approach constructs Permission Flow Graph (PFG) for an Android App. Transformations performed at code level, often result in changing control flow, however, most of the time, the permission flow remains invariant. As a consequences, PFGs of transformed malware and non-transformed malware remain structurally similar as shown in this paper using state-of-the-art graph similarity algorithm. Furthermore, we propose graph based similarity metrics at both edge level and vertex level in order to bring forth the structural similarity of the two PFGs being compared. We validate our proposed methodology through machine learning algorithms. Results prove that our approach is successfully able to group together Android malware and its variants (transformations) together in the same cluster. Further, we demonstrate that our proposed approach is able to detect transformed malware with a detection accuracy of 98.26%, thereby ensuring that malicious Apps can be detected even after transformations.
The analysis of multiple Android malware families indicates malware instances within a common malware family always have similar call graph structures. Based on the isomorphism of sensitive API call graph, we propose a method which is used to construct malware family features via combining static analysis approach with graph similarity metric. The experiment is performed on a malware dataset which contains 1326 malware samples from 16 different malware families. The result shows that the method can differentiate distinct malware family features and divide suspect malware samples into corresponding families with a high accuracy of 96.77% overall and even defend a certain extent of obfuscation.
Information-leakage is one of the most important security issues in the current Internet. In Named-Data Networking (NDN), Interest names introduce novel vulnerabilities that can be exploited. By setting up a malware, Interest names can be used to encode critical information (steganography embedded) and to leak information out of the network by generating anomalous Interest traffic. This security threat based on Interest names does not exist in IP network, and it is essential to solve this issue to secure the NDN architecture. This paper performs risk analysis of information-leakage in NDN. We first describe vulnerabilities with Interest names and, as countermeasures, we propose a name-based filter using search engine information, and another filter using one-class Support Vector Machine (SVM). We collected URLs from the data repository provided by Common Crawl and we evaluate the performances of our per-packet filters. We show that our filters can choke drastically the throughput of information-leakage, which makes it easier to detect anomalous Interest traffic. It is therefore possible to mitigate information-leakage in NDN network and it is a strong incentive for future deployment of this architecture at the Internet scale.
Anomaly detection for cyber-security defence hasgarnered much attention in recent years providing an orthogonalapproach to traditional signature-based detection systems.Anomaly detection relies on building probability models ofnormal computer network behaviour and detecting deviationsfrom the model. Most data sets used for cyber-security havea mix of user-driven events and automated network events,which most often appears as polling behaviour. Separating theseautomated events from those caused by human activity is essentialto building good statistical models for anomaly detection. This articlepresents a changepoint detection framework for identifyingautomated network events appearing as periodic subsequences ofevent times. The opening event of each subsequence is interpretedas a human action which then generates an automated, periodicprocess. Difficulties arising from the presence of duplicate andmissing data are addressed. The methodology is demonstrated usingauthentication data from Los Alamos National Laboratory'senterprise computer network.
The large number of malicious files that are produced daily outpaces the current capacity of malware analysis and detection. For example, Intel Security Labs reported that during the second quarter of 2016, their system found more than 40M of new malware [1]. The damage of malware attacks is also increasingly devastating, as witnessed by the recent Cryptowall malware that has reportedly generated more than \$325M in ransom payments to its perpetrators [2]. In terms of defense, it has been widely accepted that the traditional approach based on byte-string signatures is increasingly ineffective, especially for new malware samples and sophisticated variants of existing ones. New techniques are therefore needed for effective defense against malware. Motivated by this problem, the paper investigates a new defense technique against malware. The technique presented in this paper is utilized for automatic identification of malware packers that are used to obfuscate malware programs. Signatures of malware packers and obfuscators are extracted from the CFGs of malware samples. Unlike conventional byte signatures that can be evaded by simply modifying one or multiple bytes in malware samples, these signatures are more difficult to evade. For example, CFG-based signatures are shown to be resilient against instruction modifications and shuffling, as a single signature is sufficient for detecting mildly different versions of the same malware. Last but not least, the process for extracting CFG-based signatures is also made automatic.
Code signing which at present is the only methodology of trusting a code that is distributed to others. It heavily relies on the security of the software providers private key. Attackers employ targeted attacks on the code signing infrastructure for stealing the signing keys which are used later for distributing malware in disguise of genuine software. Differentiating a malware from a benign software becomes extremely difficult once it gets signed by a trusted software providers private key as the operating systems implicitly trusts this signed code. In this paper, we analyze the growing menace of signed malware by examining several real world incidents and present a threat model for the current code signing infrastructure. We also propose a novel solution that prevents this issue of malicious code signing by requiring additional verification of the executable. We also present the serious threat it poses and it consequences. To our knowledge this is the first time this specific issue of Malicious code signing has been thoroughly studied and an implementable solution is proposed.
In this work, we propose a design flow for automatic generation of hardware sandboxes purposed for IP security in trusted system-on-chips (SoCs). Our tool CAPSL, the Component Authentication Process for Sandboxed Layouts, is capable of detecting trojan activation and nullifying possible damage to a system at run-time, avoiding complex pre-fabrication and pre-deployment testing for trojans. Our approach captures the behavioral properties of non-trusted IPs, typically from a third-party or components off the shelf (COTS), with the formalism of interface automata and the Property Specification Language's sequential extended regular expressions (SERE). Using the concept of hardware sandboxing, we translate the property specifications to checker automata and partition an untrusted sector of the system, with included virtualized resources and controllers, to isolate sandbox-system interactions upon deviation from the behavioral checkers. Our design flow is verified with benchmarks from Trust-Hub.org, which show 100% trojan detection with reduced checker overhead compared to other run-time verification techniques.
Malicious emails pose substantial threats to businesses. Whether it is a malware attachment or a URL leading to malware, exploitation or phishing, attackers have been employing emails as an effective way to gain a foothold inside organizations of all kinds. To combat email threats, especially targeted attacks, traditional signature- and rule-based email filtering as well as advanced sandboxing technology both have their own weaknesses. In this paper, we propose a predictive analysis approach that learns the differences between legit and malicious emails through static analysis, creates a machine learning model and makes detection and prediction on unseen emails effectively and efficiently. By comparing three different machine learning algorithms, our preliminary evaluation reveals that a Random Forests model performs the best.
With an aim of provisioning fast, reliable and low cost services to the users, the cloud-computing technology has progressed leaps and bounds. But, adjacent to its development is ever increasing ability of malicious users to compromise its security from outside as well as inside. The Network Intrusion Detection System (NIDS) techniques has gone a long way in detection of known and unknown attacks. The methods of detection of intrusion and deployment of NIDS in cloud environment are dependent on the type of services being rendered by the cloud. It is also important that the cloud administrator is able to determine the malicious intensions of the attackers and various methods of attack. In this paper, we carry out the integration of NIDS module and Honeypot Networks in Cloud environment with objective to mitigate the known and unknown attacks. We also propose method to generate and update signatures from information derived from the proposed integrated model. Using sandboxing environment, we perform dynamic malware analysis of binaries to derive conclusive evidence of malicious attacks.
Ransomware is one of the most increasing malwares used by cyber-criminals in recent days. This type of malware uses cryptographic technology that encrypts a user's important files, folders makes the computer systems unusable, holds the decryption key and asks for the ransom from the victims for recovery. The recent ransomware families are very sophisticated and difficult to analyze & detect using static features only. On the other hand, latest crypto-ransomwares having sandboxing and IDS evading capabilities. So obviously, static or dynamic analysis of the ransomware alone cannot provide better solution. In this paper, we will present a Machine Learning based approach which will use integrated method, a combination of static and dynamic analysis to detect ransomware. The experimental test samples were taken from almost all ransomware families including the most recent ``WannaCry''. The results also suggest that combined analysis can detect ransomware with better accuracy compared to individual analysis approach. Since ransomware samples show some ``run-time'' and ``static code'' features, it also helps for the early detection of new and similar ransomware variants.
Over the years cybercriminals have misused the Domain Name System (DNS) - a critical component of the Internet - to gain profit. Despite this persisting trend, little empirical information about the security of Top-Level Domains (TLDs) and of the overall 'health' of the DNS ecosystem exists. In this paper, we present security metrics for this ecosystem and measure the operational values of such metrics using three representative phishing and malware datasets. We benchmark entire TLDs against the rest of the market. We explicitly distinguish these metrics from the idea of measuring security performance, because the measured values are driven by multiple factors, not just by the performance of the particular market player. We consider two types of security metrics: occurrence of abuse and persistence of abuse. In conjunction, they provide a good understanding of the overall health of a TLD. We demonstrate that attackers abuse a variety of free services with good reputation, affecting not only the reputation of those services, but of entire TLDs. We find that, when normalized by size, old TLDs like .com host more bad content than new generic TLDs. We propose a statistical regression model to analyze how the different properties of TLD intermediaries relate to abuse counts. We find that next to TLD size, abuse is positively associated with domain pricing (i.e. registries who provide free domain registrations witness more abuse). Last but not least, we observe a negative relation between the DNSSEC deployment rate and the count of phishing domains.
Over the years cybercriminals have misused the Domain Name System (DNS) - a critical component of the Internet - to gain profit. Despite this persisting trend, little empirical information about the security of Top-Level Domains (TLDs) and of the overall 'health' of the DNS ecosystem exists. In this paper, we present security metrics for this ecosystem and measure the operational values of such metrics using three representative phishing and malware datasets. We benchmark entire TLDs against the rest of the market. We explicitly distinguish these metrics from the idea of measuring security performance, because the measured values are driven by multiple factors, not just by the performance of the particular market player. We consider two types of security metrics: occurrence of abuse and persistence of abuse. In conjunction, they provide a good understanding of the overall health of a TLD. We demonstrate that attackers abuse a variety of free services with good reputation, affecting not only the reputation of those services, but of entire TLDs. We find that, when normalized by size, old TLDs like .com host more bad content than new generic TLDs. We propose a statistical regression model to analyze how the different properties of TLD intermediaries relate to abuse counts. We find that next to TLD size, abuse is positively associated with domain pricing (i.e. registries who provide free domain registrations witness more abuse). Last but not least, we observe a negative relation between the DNSSEC deployment rate and the count of phishing domains.
Hardware Trojan (HT) detection methods based on the side channel analysis deeply suffer from the process variations. In order to suppress the effect of the variations, we devise a method that smartly selects two highly correlated paths for each interconnect (edge) that is suspected to have an HT on it. First path is the shortest one passing through the suspected edge and the second one is a path that is highly correlated with the first one. Delay ratio of these paths avails the detection of the HT inserted circuits. Test results reveal that the method enables the detection of even the minimally invasive Trojans in spite of both inter and intra die variations with the spatial correlations.
Recently, due to the increase of outsourcing in IC design, it has been reported that malicious third-party vendors often insert hardware Trojans into their ICs. How to detect them is a strong concern in IC design process. The features of hardware-Trojan infected nets (or Trojan nets) in ICs often differ from those of normal nets. To classify all the nets in netlists designed by third-party vendors into Trojan ones and normal ones, we have to extract effective Trojan features from Trojan nets. In this paper, we first propose 51 Trojan features which describe Trojan nets from netlists. Based on the importance values obtained from the random forest classifier, we extract the best set of 11 Trojan features out of the 51 features which can effectively detect Trojan nets, maximizing the F-measures. By using the 11 Trojan features extracted, the machine-learning based hardware Trojan classifier has achieved at most 100% true positive rate as well as 100% true negative rate in several TrustHUB benchmarks and obtained the average F-measure of 74.6%, which realizes the best values among existing machine-learning-based hardware-Trojan detection methods.