Visible to the public Biblio

Found 377 results

Filters: Keyword is invasive software  [Clear All Filters]
2020-01-20
Musca, Constantin, Mirica, Emma, Deaconescu, Razvan.  2013.  Detecting and Analyzing Zero-Day Attacks Using Honeypots. 2013 19th International Conference on Control Systems and Computer Science. :543–548.

Computer networks are overwhelmed by self propagating malware (worms, viruses, trojans). Although the number of security vulnerabilities grows every day, not the same thing can be said about the number of defense methods. But the most delicate problem in the information security domain remains detecting unknown attacks known as zero-day attacks. This paper presents methods for isolating the malicious traffic by using a honeypot system and analyzing it in order to automatically generate attack signatures for the Snort intrusion detection/prevention system. The honeypot is deployed as a virtual machine and its job is to log as much information as it can about the attacks. Then, using a protected machine, the logs are collected remotely, through a safe connection, for analysis. The challenge is to mitigate the risk we are exposed to and at the same time search for unknown attacks.

Bardia, Vivek, Kumar, C.R.S..  2017.  Process trees amp; service chains can serve us to mitigate zero day attacks better. 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI). :280–284.
With technology at our fingertips waiting to be exploited, the past decade saw the revolutionizing Human Computer Interactions. The ease with which a user could interact was the Unique Selling Proposition (USP) of a sales team. Human Computer Interactions have many underlying parameters like Data Visualization and Presentation as some to deal with. With the race, on for better and faster presentations, evolved many frameworks to be widely used by all software developers. As the need grew for user friendly applications, more and more software professionals were lured into the front-end sophistication domain. Application frameworks have evolved to such an extent that with just a few clicks and feeding values as per requirements we are able to produce a commercially usable application in a few minutes. These frameworks generate quantum lines of codes in minutes which leaves a contrail of bugs to be discovered in the future. We have also succumbed to the benchmarking in Software Quality Metrics and have made ourselves comfortable with buggy software's to be rectified in future. The exponential evolution in the cyber domain has also attracted attackers equally. Average human awareness and knowledge has also improved in the cyber domain due to the prolonged exposure to technology for over three decades. As the attack sophistication grows and zero day attacks become more popular than ever, the suffering end users only receive remedial measures in spite of the latest Antivirus, Intrusion Detection and Protection Systems installed. We designed a software to display the complete services and applications running in users Operating System in the easiest perceivable manner aided by Computer Graphics and Data Visualization techniques. We further designed a study by empowering the fence sitter users with tools to actively participate in protecting themselves from threats. The designed threats had impressions from the complete threat canvas in some form or other restricted to systems functioning. Network threats and any sort of packet transfer to and from the system in form of threat was kept out of the scope of this experiment. We discovered that end users had a good idea of their working environment which can be used exponentially enhances machine learning for zero day threats and segment the unmarked the vast threat landscape faster for a more reliable output.
Nicho, Mathew, McDermott, Christopher D..  2019.  Dimensions of ‘Socio’ Vulnerabilities of Advanced Persistent Threats. 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). :1–5.
Advanced Persistent Threats (APT) are highly targeted and sophisticated multi-stage attacks, utilizing zero day or near zero-day malware. Directed at internetworked computer users in the workplace, their growth and prevalence can be attributed to both socio (human) and technical (system weaknesses and inadequate cyber defenses) vulnerabilities. While many APT attacks incorporate a blend of socio-technical vulnerabilities, academic research and reported incidents largely depict the user as the prominent contributing factor that can weaken the layers of technical security in an organization. In this paper, our objective is to explore multiple dimensions of socio factors (non-technical vulnerabilities) that contribute to the success of APT attacks in organizations. Expert interviews were conducted with senior managers, working in government and private organizations in the United Arab Emirates (UAE) over a period of four years (2014 to 2017). Contrary to common belief that socio factors derive predominately from user behavior, our study revealed two new dimensions of socio vulnerabilities, namely the role of organizational management, and environmental factors which also contribute to the success of APT attacks. We show that the three dimensions postulated in this study can assist Managers and IT personnel in organizations to implement an appropriate mix of socio-technical countermeasures for APT threats.
2020-01-02
Hagan, Matthew, Kang, BooJoong, McLaughlin, Kieran, Sezer, Sakir.  2018.  Peer Based Tracking Using Multi-Tuple Indexing for Network Traffic Analysis and Malware Detection. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–5.

Traditional firewalls, Intrusion Detection Systems(IDS) and network analytics tools extensively use the `flow' connection concept, consisting of five `tuples' of source and destination IP, ports and protocol type, for classification and management of network activities. By analysing flows, information can be obtained from TCP/IP fields and packet content to give an understanding of what is being transferred within a single connection. As networks have evolved to incorporate more connections and greater bandwidth, particularly from ``always on'' IoT devices and video and data streaming, so too have malicious network threats, whose communication methods have increased in sophistication. As a result, the concept of the 5 tuple flow in isolation is unable to detect such threats and malicious behaviours. This is due to factors such as the length of time and data required to understand the network traffic behaviour, which cannot be accomplished by observing a single connection. To alleviate this issue, this paper proposes the use of additional, two tuple and single tuple flow types to associate multiple 5 tuple communications, with generated metadata used to profile individual connnection behaviour. This proposed approach enables advanced linking of different connections and behaviours, developing a clearer picture as to what network activities have been taking place over a prolonged period of time. To demonstrate the capability of this approach, an expert system rule set has been developed to detect the presence of a multi-peered ZeuS botnet, which communicates by making multiple connections with multiple hosts, thus undetectable to standard IDS systems observing 5 tuple flow types in isolation. Finally, as the solution is rule based, this implementation operates in realtime and does not require post-processing and analytics of other research solutions. This paper aims to demonstrate possible applications for next generation firewalls and methods to acquire additional information from network traffic.

Mar\'ın, Gonzalo, Casas, Pedro, Capdehourat, Germán.  2019.  Deep in the Dark - Deep Learning-Based Malware Traffic Detection Without Expert Knowledge. 2019 IEEE Security and Privacy Workshops (SPW). :36–42.

With the ever-growing occurrence of networking attacks, robust network security systems are essential to prevent and mitigate their harming effects. In recent years, machine learning-based systems have gain popularity for network security applications, usually considering the application of shallow models, where a set of expert handcrafted features are needed to pre-process the data before training. The main problem with this approach is that handcrafted features can fail to perform well given different kinds of scenarios and problems. Deep Learning models can solve this kind of issues using their ability to learn feature representations from input raw or basic, non-processed data. In this paper we explore the power of deep learning models on the specific problem of detection and classification of malware network traffic, using different representations for the input data. As a major advantage as compared to the state of the art, we consider raw measurements coming directly from the stream of monitored bytes as the input to the proposed models, and evaluate different raw-traffic feature representations, including packet and flow-level ones. Our results suggest that deep learning models can better capture the underlying statistics of malicious traffic as compared to classical, shallow-like models, even while operating in the dark, i.e., without any sort of expert handcrafted inputs.

2019-12-18
Shafi, Qaisar, Basit, Abdul.  2019.  DDoS Botnet Prevention Using Blockchain in Software Defined Internet of Things. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :624-628.

Distributed Denial of Service (DDoS) attacks have two defense perspectives firstly, to defend your network, resources and other information assets from this disastrous attack. Secondly, to prevent your network to be the part of botnet (botforce) bondage to launch attacks on other networks and resources mainly be controlled from a control center. This work focuses on the development of a botnet prevention system for Internet of Things (IoT) that uses the benefits of both Software Defined Networking (SDN) and Distributed Blockchain (DBC). We simulate and analyze that using blockchain and SDN, how can detect and mitigate botnets and prevent our devices to play into the hands of attackers.

2019-12-16
McDermott, Christopher D., Jeannelle, Bastien, Isaacs, John P..  2019.  Towards a Conversational Agent for Threat Detection in the Internet of Things. 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

A conversational agent to detect anomalous traffic in consumer IoT networks is presented. The agent accepts two inputs in the form of user speech received by Amazon Alexa enabled devices, and classified IDS logs stored in a DynamoDB Table. Aural analysis is used to query the database of network traffic, and respond accordingly. In doing so, this paper presents a solution to the problem of making consumers situationally aware when their IoT devices are infected, and anomalous traffic has been detected. The proposed conversational agent addresses the issue of how to present network information to non-technical users, for better comprehension, and improves awareness of threats derived from the mirai botnet malware.

2019-12-02
Ibarra, Jaime, Javed Butt, Usman, Do, Anh, Jahankhani, Hamid, Jamal, Arshad.  2019.  Ransomware Impact to SCADA Systems and its Scope to Critical Infrastructure. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :1–12.
SCADA systems are being constantly migrated to modern information and communication technologies (ICT) -based systems named cyber-physical systems. Unfortunately, this allows attackers to execute exploitation techniques into these architectures. In addition, ransomware insertion is nowadays the most popular attacking vector because it denies the availability of critical files and systems until attackers receive the demanded ransom. In this paper, it is analysed the risk impact of ransomware insertion into SCADA systems and it is suggested countermeasures addressed to the protection of SCADA systems and its components to reduce the impact of ransomware insertion.
2019-11-26
Wang, Pengfei, Wang, Fengyu, Lin, Fengbo, Cao, Zhenzhong.  2018.  Identifying Peer-to-Peer Botnets Through Periodicity Behavior Analysis. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :283-288.

Peer-to-Peer botnets have become one of the significant threat against network security due to their distributed properties. The decentralized nature makes their detection challenging. It is important to take measures to detect bots as soon as possible to minimize their harm. In this paper, we propose PeerGrep, a novel system capable of identifying P2P bots. PeerGrep starts from identifying hosts that are likely engaged in P2P communications, and then distinguishes P2P bots from P2P hosts by analyzing their active ratio, packet size and the periodicity of connection to destination IP addresses. The evaluation shows that PeerGrep can identify all P2P bots with quite low FPR even if the malicious P2P application and benign P2P application coexist within the same host or there is only one bot in the monitored network.

2019-11-04
Daoud, Luka, Rafla, Nader.  2018.  Routing Aware and Runtime Detection for Infected Network-on-Chip Routers. 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). :775-778.

Network-on-Chip (NoC) architecture is the communication heart of the processing cores in Multiprocessors System-on-Chip (MPSoC), where messages are routed from a source to a destination through intermediate nodes. Therefore, NoC has become a target to security attacks. By experiencing outsourcing design, NoC can be infected with a malicious Hardware Trojans (HTs) which potentially degrade the system performance or leave a backdoor for secret key leaking. In this paper, we propose a HT model that applies a denial of service attack by misrouting the packets, which causes deadlock and consequently degrading the NoC performance. We present a secure routing algorithm that provides a runtime HT detection and avoiding scheme. Results show that our proposed model has negligible overhead in area and power, 0.4% and 0.6%, respectively.

2019-10-07
Aidan, J. S., Zeenia, Garg, U..  2018.  Advanced Petya Ransomware and Mitigation Strategies. 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC). :23–28.

In this cyber era, the cyber threats have reached a new level of menace and maturity. One of the major threat in this cyber world nowadays is ransomware attack which had affected millions of computers. Ransomware locks the valuable data with often unbreakable encryption codes making it inaccessible for both organization and consumers, thus demanding heavy ransom to decrypt the data. In this paper, advanced and improved version of the Petya ransomware has been introduced which has a reduced anti-virus detection of 33% which actually was 71% with the original version. System behavior is also monitored during the attack and analysis of this behavior is performed and described. Along with the behavioral analysis two mitigation strategies have also been proposed to defend the systems from the ransomware attack. This multi-layered approach for the security of the system will minimize the rate of infection as cybercriminals continue to refine their tactics, making it difficult for the organization's complacent development.

Kara, I., Aydos, M..  2018.  Static and Dynamic Analysis of Third Generation Cerber Ransomware. 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT). :12–17.

Cyber criminals have been extensively using malicious Ransomware software for years. Ransomware is a subset of malware in which the data on a victim's computer is locked, typically by encryption, and payment is demanded before the ransomed data is decrypted and access returned to the victim. The motives for such attacks are not only limited to economical scumming. Illegal attacks on official databases may also target people with political or social power. Although billions of dollars have been spent for preventing or at least reducing the tremendous amount of losses, these malicious Ransomware attacks have been expanding and growing. Therefore, it is critical to perform technical analysis of such malicious codes and, if possible, determine the source of such attacks. It might be almost impossible to recover the affected files due to the strong encryption imposed on such files, however the determination of the source of Ransomware attacks have been becoming significantly important for criminal justice. Unfortunately, there are only a few technical analysis of real life attacks in the literature. In this work, a real life Ransomware attack on an official institute is investigated and fully analyzed. The analysis have been performed by both static and dynamic methods. The results show that the source of the Ransomware attack has been shown to be traceable from the server's whois information.

Agrawal, R., Stokes, J. W., Selvaraj, K., Marinescu, M..  2019.  Attention in Recurrent Neural Networks for Ransomware Detection. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3222–3226.

Ransomware, as a specialized form of malicious software, has recently emerged as a major threat in computer security. With an ability to lock out user access to their content, recent ransomware attacks have caused severe impact at an individual and organizational level. While research in malware detection can be adapted directly for ransomware, specific structural properties of ransomware can further improve the quality of detection. In this paper, we adapt the deep learning methods used in malware detection for detecting ransomware from emulation sequences. We present specialized recurrent neural networks for capturing local event patterns in ransomware sequences using the concept of attention mechanisms. We demonstrate the performance of enhanced LSTM models on a sequence dataset derived by the emulation of ransomware executables targeting the Windows environment.

2019-09-09
Kesidis, G., Shan, Y., Fleck, D., Stavrou, A., Konstantopoulos, T..  2018.  An adversarial coupon-collector model of asynchronous moving-target defense against botnet reconnaissance*. 2018 13th International Conference on Malicious and Unwanted Software (MALWARE). :61–67.

We consider a moving-target defense of a proxied multiserver tenant of the cloud where the proxies dynamically change to defeat reconnaissance activity by a botnet planning a DDoS attack targeting the tenant. Unlike the system of [4] where all proxies change simultaneously at a fixed rate, we consider a more “responsive” system where the proxies may change more rapidly and selectively based on the current session request intensity, which is expected to be abnormally large during active reconnaissance. In this paper, we study a tractable “adversarial” coupon-collector model wherein proxies change after a random period of time from the latest request, i.e., asynchronously. In addition to determining the stationary mean number of proxies discovered by the attacker, we study the age of a proxy (coupon type) when it has been identified (requested) by the botnet. This gives us the rate at which proxies change (cost to the defender) when the nominal client request load is relatively negligible.

2019-07-01
Akhtar, T., Gupta, B. B., Yamaguchi, S..  2018.  Malware propagation effects on SCADA system and smart power grid. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1–6.

Critical infrastructures have suffered from different kind of cyber attacks over the years. Many of these attacks are performed using malwares by exploiting the vulnerabilities of these resources. Smart power grid is one of the major victim which suffered from these attacks and its SCADA system are frequently targeted. In this paper we describe our proposed framework to analyze smart power grid, while its SCADA system is under attack by malware. Malware propagation and its effects on SCADA system is the focal point of our analysis. OMNeT++ simulator and openDSS is used for developing and analyzing the simulated smart power grid environment.

Amjad, N., Afzal, H., Amjad, M. F., Khan, F. A..  2018.  A Multi-Classifier Framework for Open Source Malware Forensics. 2018 IEEE 27th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). :106-111.

Traditional anti-virus technologies have failed to keep pace with proliferation of malware due to slow process of their signatures and heuristics updates. Similarly, there are limitations of time and resources in order to perform manual analysis on each malware. There is a need to learn from this vast quantity of data, containing cyber attack pattern, in an automated manner to proactively adapt to ever-evolving threats. Machine learning offers unique advantages to learn from past cyber attacks to handle future cyber threats. The purpose of this research is to propose a framework for multi-classification of malware into well-known categories by applying different machine learning models over corpus of malware analysis reports. These reports are generated through an open source malware sandbox in an automated manner. We applied extensive pre-modeling techniques for data cleaning, features exploration and features engineering to prepare training and test datasets. Best possible hyper-parameters are selected to build machine learning models. These prepared datasets are then used to train the machine learning classifiers and to compare their prediction accuracy. Finally, these results are validated through a comprehensive 10-fold cross-validation methodology. The best results are achieved through Gaussian Naive Bayes classifier with random accuracy of 96% and 10-Fold Cross Validation accuracy of 91.2%. The said framework can be deployed in an operational environment to learn from malware attacks for proactively adapting matching counter measures.

2019-06-24
Stokes, J. W., Wang, D., Marinescu, M., Marino, M., Bussone, B..  2018.  Attack and Defense of Dynamic Analysis-Based, Adversarial Neural Malware Detection Models. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :1–8.

Recently researchers have proposed using deep learning-based systems for malware detection. Unfortunately, all deep learning classification systems are vulnerable to adversarial learning-based attacks, or adversarial attacks, where miscreants can avoid detection by the classification algorithm with very few perturbations of the input data. Previous work has studied adversarial attacks against static analysis-based malware classifiers which only classify the content of the unknown file without execution. However, since the majority of malware is either packed or encrypted, malware classification based on static analysis often fails to detect these types of files. To overcome this limitation, anti-malware companies typically perform dynamic analysis by emulating each file in the anti-malware engine or performing in-depth scanning in a virtual machine. These strategies allow the analysis of the malware after unpacking or decryption. In this work, we study different strategies of crafting adversarial samples for dynamic analysis. These strategies operate on sparse, binary inputs in contrast to continuous inputs such as pixels in images. We then study the effects of two, previously proposed defensive mechanisms against crafted adversarial samples including the distillation and ensemble defenses. We also propose and evaluate the weight decay defense. Experiments show that with these three defenses, the number of successfully crafted adversarial samples is reduced compared to an unprotected baseline system. In particular, the ensemble defense is the most resilient to adversarial attacks. Importantly, none of the defenses significantly reduce the classification accuracy for detecting malware. Finally, we show that while adding additional hidden layers to neural models does not significantly improve the malware classification accuracy, it does significantly increase the classifier's robustness to adversarial attacks.

Ijaz, M., Durad, M. H., Ismail, M..  2019.  Static and Dynamic Malware Analysis Using Machine Learning. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :687–691.

Malware detection is an indispensable factor in security of internet oriented machines. The combinations of different features are used for dynamic malware analysis. The different combinations are generated from APIs, Summary Information, DLLs and Registry Keys Changed. Cuckoo sandbox is used for dynamic malware analysis, which is customizable, and provide good accuracy. More than 2300 features are extracted from dynamic analysis of malware and 92 features are extracted statically from binary malware using PEFILE. Static features are extracted from 39000 malicious binaries and 10000 benign files. Dynamically 800 benign files and 2200 malware files are analyzed in Cuckoo Sandbox and 2300 features are extracted. The accuracy of dynamic malware analysis is 94.64% while static analysis accuracy is 99.36%. The dynamic malware analysis is not effective due to tricky and intelligent behaviours of malwares. The dynamic analysis has some limitations due to controlled network behavior and it cannot be analyzed completely due to limited access of network.

Wright, D., Stroschein, J..  2018.  A Malware Analysis and Artifact Capture Tool. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :328–333.

Malware authors attempt to obfuscate and hide their code in its static and dynamic states. This paper provides a novel approach to aid analysis by intercepting and capturing malware artifacts and providing dynamic control of process flow. Capturing malware artifacts allows an analyst to more quickly and comprehensively understand malware behavior and obfuscation techniques and doing so interactively allows multiple code paths to be explored. The faster that malware can be analyzed the quicker the systems and data compromised by it can be determined and its infection stopped. This research proposes an instantiation of an interactive malware analysis and artifact capture tool.

Naeem, H., Guo, B., Naeem, M. R..  2018.  A light-weight malware static visual analysis for IoT infrastructure. 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). :240–244.

Recently a huge trend on the internet of things (IoT) and an exponential increase in automated tools are helping malware producers to target IoT devices. The traditional security solutions against malware are infeasible due to low computing power for large-scale data in IoT environment. The number of malware and their variants are increasing due to continuous malware attacks. Consequently, the performance improvement in malware analysis is critical requirement to stop rapid expansion of malicious attacks in IoT environment. To solve this problem, the paper proposed a novel framework for classifying malware in IoT environment. To achieve flne-grained malware classification in suggested framework, the malware image classification system (MICS) is designed for representing malware image globally and locally. MICS first converts the suspicious program into the gray-scale image and then captures hybrid local and global malware features to perform malware family classification. Preliminary experimental outcomes of MICS are quite promising with 97.4% classification accuracy on 9342 windows suspicious programs of 25 families. The experimental results indicate that proposed framework is quite capable to process large-scale IoT malware.

Qbeitah, M. A., Aldwairi, M..  2018.  Dynamic malware analysis of phishing emails. 2018 9th International Conference on Information and Communication Systems (ICICS). :18–24.

Malicious software or malware is one of the most significant dangers facing the Internet today. In the fight against malware, users depend on anti-malware and anti-virus products to proactively detect threats before damage is done. Those products rely on static signatures obtained through malware analysis. Unfortunately, malware authors are always one step ahead in avoiding detection. This research deals with dynamic malware analysis, which emphasizes on: how the malware will behave after execution, what changes to the operating system, registry and network communication take place. Dynamic analysis opens up the doors for automatic generation of anomaly and active signatures based on the new malware's behavior. The research includes a design of honeypot to capture new malware and a complete dynamic analysis laboratory setting. We propose a standard analysis methodology by preparing the analysis tools, then running the malicious samples in a controlled environment to investigate their behavior. We analyze 173 recent Phishing emails and 45 SPIM messages in search for potentially new malwares, we present two malware samples and their comprehensive dynamic analysis.

2019-06-10
Tran, T. K., Sato, H., Kubo, M..  2018.  One-Shot Learning Approach for Unknown Malware Classification. 2018 5th Asian Conference on Defense Technology (ACDT). :8-13.

Early detection of new kinds of malware always plays an important role in defending the network systems. Especially, if intelligent protection systems could themselves detect an existence of new malware types in their system, even with a very small number of malware samples, it must be a huge benefit for the organization as well as the social since it help preventing the spreading of that kind of malware. To deal with learning from few samples, term ``one-shot learning'' or ``fewshot learning'' was introduced, and mostly used in computer vision to recognize images, handwriting, etc. An approach introduced in this paper takes advantage of One-shot learning algorithms in solving the malware classification problem by using Memory Augmented Neural Network in combination with malware's API calls sequence, which is a very valuable source of information for identifying malware behavior. In addition, it also use some advantages of the development in Natural Language Processing field such as word2vec, etc. to convert those API sequences to numeric vectors before feeding to the one-shot learning network. The results confirm very good accuracies compared to the other traditional methods.

Kargaard, J., Drange, T., Kor, A., Twafik, H., Butterfield, E..  2018.  Defending IT Systems against Intelligent Malware. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). :411-417.

The increasing amount of malware variants seen in the wild is causing problems for Antivirus Software vendors, unable to keep up by creating signatures for each. The methods used to develop a signature, static and dynamic analysis, have various limitations. Machine learning has been used by Antivirus vendors to detect malware based on the information gathered from the analysis process. However, adversarial examples can cause machine learning algorithms to miss-classify new data. In this paper we describe a method for malware analysis by converting malware binaries to images and then preparing those images for training within a Generative Adversarial Network. These unsupervised deep neural networks are not susceptible to adversarial examples. The conversion to images from malware binaries should be faster than using dynamic analysis and it would still be possible to link malware families together. Using the Generative Adversarial Network, malware detection could be much more effective and reliable.

Roseline, S. A., Geetha, S..  2018.  Intelligent Malware Detection Using Oblique Random Forest Paradigm. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :330-336.

With the increase in the popularity of computerized online applications, the analysis, and detection of a growing number of newly discovered stealthy malware poses a significant challenge to the security community. Signature-based and behavior-based detection techniques are becoming inefficient in detecting new unknown malware. Machine learning solutions are employed to counter such intelligent malware and allow performing more comprehensive malware detection. This capability leads to an automatic analysis of malware behavior. The proposed oblique random forest ensemble learning technique is efficient for malware classification. The effectiveness of the proposed method is demonstrated with three malware classification datasets from various sources. The results are compared with other variants of decision tree learning models. The proposed system performs better than the existing system in terms of classification accuracy and false positive rate.

Udayakumar, N., Saglani, V. J., Cupta, A. V., Subbulakshmi, T..  2018.  Malware Classification Using Machine Learning Algorithms. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1-9.

Lately, we are facing the Malware crisis due to various types of malware or malicious programs or scripts available in the huge virtual world - the Internet. But, what is malware? Malware can be a malicious software or a program or a script which can be harmful to the user's computer. These malicious programs can perform a variety of functions, including stealing, encrypting or deleting sensitive data, altering or hijacking core computing functions and monitoring users' computer activity without their permission. There are various entry points for these programs and scripts in the user environment, but only one way to remove them is to find them and kick them out of the system which isn't an easy job as these small piece of script or code can be anywhere in the user system. This paper involves the understanding of different types of malware and how we will use Machine Learning to detect these malwares.