Visible to the public Biblio

Found 522 results

Filters: Keyword is Malware  [Clear All Filters]
2022-02-07
Osman, Mohd Zamri, Abidin, Ahmad Firdaus Zainal, Romli, Rahiwan Nazar, Darmawan, Mohd Faaizie.  2021.  Pixel-based Feature for Android Malware Family Classification using Machine Learning Algorithms. 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). :552–555.
‘Malicious software’ or malware has been a serious threat to the security and privacy of all mobile phone users. Due to the popularity of smartphones, primarily Android, this makes them a very viable target for spreading malware. In the past, many solutions have proved ineffective and have resulted in many false positives. Having the ability to identify and classify malware will help prevent them from spreading and evolving. In this paper, we study the effectiveness of the proposed classification of the malware family using a pixel level as features. This study has implemented well-known machine learning and deep learning classifiers such as K-Nearest Neighbours (k-NN), Support Vector Machine (SVM), Naïve Bayes (NB), Decision Tree, and Random Forest. A binary file of 25 malware families is converted into a fixed grayscale image. The grayscale images were then extracted transforming the size 100x100 into a single format into 100000 columns. During this phase, none of the columns are removed as to remain the patterns in each malware family. The experimental results show that our approach achieved 92% accuracy in Random Forest, 88% in SVM, 81% in Decision Tree, 80% in k-NN and 56% in Naïve Bayes classifier. Overall, the pixel-based feature also reveals a promising technique for identifying the family of malware with great accuracy, especially using the Random Forest classifier.
Singh, Shirish, Kaiser, Gail.  2021.  Metamorphic Detection of Repackaged Malware. 2021 IEEE/ACM 6th International Workshop on Metamorphic Testing (MET). :9–16.
Machine learning-based malware detection systems are often vulnerable to evasion attacks, in which a malware developer manipulates their malicious software such that it is misclassified as benign. Such software hides some properties of the real class or adopts some properties of a different class by applying small perturbations. A special case of evasive malware hides by repackaging a bonafide benign mobile app to contain malware in addition to the original functionality of the app, thus retaining most of the benign properties of the original app. We present a novel malware detection system based on metamorphic testing principles that can detect such benign-seeming malware apps. We apply metamorphic testing to the feature representation of the mobile app, rather than to the app itself. That is, the source input is the original feature vector for the app and the derived input is that vector with selected features removed. If the app was originally classified benign, and is indeed benign, the output for the source and derived inputs should be the same class, i.e., benign, but if they differ, then the app is exposed as (likely) malware. Malware apps originally classified as malware should retain that classification, since only features prevalent in benign apps are removed. This approach enables the machine learning model to classify repackaged malware with reasonably few false negatives and false positives. Our training pipeline is simpler than many existing ML-based malware detection methods, as the network is trained end-to-end to jointly learn appropriate features and to perform classification. We pre-trained our classifier model on 3 million apps collected from the widely-used AndroZoo dataset.1 We perform an extensive study on other publicly available datasets to show our approach's effectiveness in detecting repackaged malware with more than 94% accuracy, 0.98 precision, 0.95 recall, and 0.96 F1 score.
Khetarpal, Anavi, Mallik, Abhishek.  2021.  Visual Malware Classification Using Transfer Learning. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–5.
The proliferation of malware attacks causes a hindrance to cybersecurity thus, posing a significant threat to our devices. The variety and number of both known as well as unknown malware makes it difficult to detect it. Research suggests that the ramifications of malware are only becoming worse with time and hence malware analysis becomes crucial. This paper proposes a visual malware classification technique to convert malware executables into their visual representations and obtain grayscale images of malicious files. These grayscale images are then used to classify malicious files into their respective malware families by passing them through deep convolutional neural networks (CNN). As part of deep CNN, we use various ImageNet models and compare their performance.
Wang, Shuwei, Wang, Qiuyun, Jiang, Zhengwei, Wang, Xuren, Jing, Rongqi.  2021.  A Weak Coupling of Semi-Supervised Learning with Generative Adversarial Networks for Malware Classification. 2020 25th International Conference on Pattern Recognition (ICPR). :3775–3782.
Malware classification helps to understand its purpose and is also an important part of attack detection. And it is also an important part of discovering attacks. Due to continuous innovation and development of artificial intelligence, it is a trend to combine deep learning with malware classification. In this paper, we propose an improved malware image rescaling algorithm (IMIR) based on local mean algorithm. Its main goal of IMIR is to reduce the loss of information from samples during the process of converting binary files to image files. Therefore, we construct a neural network structure based on VGG model, which is suitable for image classification. In the real world, a mass of malware family labels are inaccurate or lacking. To deal with this situation, we propose a novel method to train the deep neural network by Semi-supervised Generative Adversarial Network (SGAN), which only needs a small amount of malware that have accurate labels about families. By integrating SGAN with weak coupling, we can retain the weak links of supervised part and unsupervised part of SGAN. It improves the accuracy of malware classification by making classifiers more independent of discriminators. The results of experimental demonstrate that our model achieves exhibiting favorable performance. The recalls of each family in our data set are all higher than 93.75%.
Kumar, Shashank, Meena, Shivangi, Khosla, Savya, Parihar, Anil Singh.  2021.  AE-DCNN: Autoencoder Enhanced Deep Convolutional Neural Network For Malware Classification. 2021 International Conference on Intelligent Technologies (CONIT). :1–5.
Malware classification is a problem of great significance in the domain of information security. This is because the classification of malware into respective families helps in determining their intent, activity, and level of threat. In this paper, we propose a novel deep learning approach to malware classification. The proposed method converts malware executables into image-based representations. These images are then classified into different malware families using an autoencoder enhanced deep convolutional neural network (AE-DCNN). In particular, we propose a novel training mechanism wherein a DCNN classifier is trained with the help of an encoder. We conjecture that using an encoder in the proposed way provides the classifier with the extra information that is perhaps lost during the forward propagation, thereby leading to better results. The proposed approach eliminates the use of feature engineering, reverse engineering, disassembly, and other domain-specific techniques earlier used for malware classification. On the standard Malimg dataset, we achieve a 10-fold cross-validation accuracy of 99.38% and F1-score of 99.38%. Further, due to the texture-based analysis of malware files, the proposed technique is resilient to several obfuscation techniques.
Abdelmonem, Salma, Seddik, Shahd, El-Sayed, Rania, Kaseb, Ahmed S..  2021.  Enhancing Image-Based Malware Classification Using Semi-Supervised Learning. 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :125–128.
Malicious software (malware) creators are constantly mutating malware files in order to avoid detection, resulting in hundreds of millions of new malware every year. Therefore, most malware files are unlabeled due to the time and cost needed to label them manually. This makes it very challenging to perform malware detection, i.e., deciding whether a file is malware or not, and malware classification, i.e., determining the family of the malware. Most solutions use supervised learning (e.g., ResNet and VGG) whose accuracy degrades significantly with the lack of abundance of labeled data. To solve this problem, this paper proposes a semi-supervised learning model for image-based malware classification. In this model, malware files are represented as grayscale images, and semi-supervised learning is carefully selected to handle the plethora of unlabeled data. Our proposed model is an enhanced version of the ∏-model, which makes it more accurate and consistent. Experiments show that our proposed model outperforms the original ∏-model by 4% in accuracy and three other supervised models by 6% in accuracy especially when the ratio of labeled samples is as low as 20%.
Lee, Shan-Hsin, Lan, Shen-Chieh, Huang, Hsiu-Chuan, Hsu, Chia-Wei, Chen, Yung-Shiu, Shieh, Shiuhpyng.  2021.  EC-Model: An Evolvable Malware Classification Model. 2021 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
Malware evolves quickly as new attack, evasion and mutation techniques are commonly used by hackers to build new malicious malware families. For malware detection and classification, multi-class learning model is one of the most popular machine learning models being used. To recognize malicious programs, multi-class model requires malware types to be predefined as output classes in advance which cannot be dynamically adjusted after the model is trained. When a new variant or type of malicious programs is discovered, the trained multi-class model will be no longer valid and have to be retrained completely. This consumes a significant amount of time and resources, and cannot adapt quickly to meet the timely requirement in dealing with dynamically evolving malware types. To cope with the problem, an evolvable malware classification deep learning model, namely EC-Model, is proposed in this paper which can dynamically adapt to new malware types without the need of fully retraining. Consequently, the reaction time can be significantly reduced to meet the timely requirement of malware classification. To our best knowledge, our work is the first attempt to adopt multi-task, deep learning for evolvable malware classification.
Gao, Tan, Li, Xudong, Chen, Wen.  2021.  Co-training For Image-Based Malware Classification. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :568–572.
A malware detection model based on semi-supervised learning is proposed in the paper. Our model includes mainly three parts: malware visualization, feature extraction, and classification. Firstly, the malware visualization converts malware into grayscale images; then the features of the images are extracted to reflect the coding patterns of malware; finally, a collaborative learning model is applied to malware detections using both labeled and unlabeled software samples. The proposed model was evaluated based on two commonly used benchmark datasets. The results demonstrated that compared with traditional methods, our model not only reduced the cost of sample labeling but also improved the detection accuracy through incorporating unlabeled samples into the collaborative learning process, thereby achieved higher classification performance.
Acharya, Jatin, Chuadhary, Anshul, Chhabria, Anish, Jangale, Smita.  2021.  Detecting Malware, Malicious URLs and Virus Using Machine Learning and Signature Matching. 2021 2nd International Conference for Emerging Technology (INCET). :1–5.
Nowadays most of our data is stored on an electronic device. The risk of that device getting infected by Viruses, Malware, Worms, Trojan, Ransomware, or any unwanted invader has increased a lot these days. This is mainly because of easy access to the internet. Viruses and malware have evolved over time so identification of these files has become difficult. Not only by viruses and malware your device can be attacked by a click on forged URLs. Our proposed solution for this problem uses machine learning techniques and signature matching techniques. The main aim of our solution is to identify the malicious programs/URLs and act upon them. The core idea in identifying the malware is selecting the key features from the Portable Executable file headers using these features we trained a random forest model. This RF model will be used for scanning a file and determining if that file is malicious or not. For identification of the virus, we are using the signature matching technique which is used to match the MD5 hash of the file with the virus signature database containing the MD5 hash of the identified viruses and their families. To distinguish between benign and illegitimate URLs there is a logistic regression model used. The regression model uses a tokenizer for feature extraction from the URL that is to be classified. The tokenizer separates all the domains, sub-domains and separates the URLs on every `/'. Then a TfidfVectorizer (Term Frequency - Inverse Document Frequency) is used to convert the text into a weighted value. These values are used to predict if the URL is safe to visit or not. On the integration of all three modules, the final application will provide full system protection against malicious software.
Priyadarshan, Pradosh, Sarangi, Prateek, Rath, Adyasha, Panda, Ganapati.  2021.  Machine Learning Based Improved Malware Detection Schemes. 2021 11th International Conference on Cloud Computing, Data Science Engineering (Confluence). :925–931.
In recent years, cyber security has become a challenging task to protect the networks and computing systems from various types of digital attacks. Therefore, to preserve these systems, various innovative methods have been reported and implemented in practice. However, still more research work needs to be carried out to have malware free computing system. In this paper, an attempt has been made to develop simple but reliable ML based malware detection systems which can be implemented in practice. Keeping this in view, the present paper has proposed and compared the performance of three ML based malware detection systems applicable for computer systems. The proposed methods include k-NN, RF and LR for detection purpose and the features extracted comprise of Byte and ASM. The performance obtained from the simulation study of the proposed schemes has been evaluated in terms of ROC, Log loss plot, accuracy, precision, recall, specificity, sensitivity and F1-score. The analysis of the various results clearly demonstrates that the RF based malware detection scheme outperforms the model based on k-NN and LR The efficiency of detection of proposed ML models is either same or comparable to deep learning-based methods.
Kita, Kouhei, Uda, Ryuya.  2021.  Malware Subspecies Detection Method by Suffix Arrays and Machine Learning. 2021 55th Annual Conference on Information Sciences and Systems (CISS). :1–6.
Malware such as metamorphic virus changes its codes and it cannot be detected by pattern matching. Such malware can be detected by surface analysis, dynamic analysis or static analysis. We focused on surface analysis since neither virtual environments nor high level engineering is required. A representative method in surface analysis is n-gram with machine learning. On the other hand, important features are sometimes cut off by n-gram since n is not variable in some existing methods. Hence, scores of malware detection methods are not perfect. Moreover, creating n-gram features takes long time for comparing files. Furthermore, in some n-gram methods, invisible malware can be created when the methods are known to attackers. Therefore, we proposed a new malware subspecies detection method by suffix arrays and machine learning. We evaluated the method with four real malware subspecies families and succeeded to classify them with almost 100% accuracy.
Mohandas, Pavitra, Santhosh Kumar, Sudesh Kumar, Kulyadi, Sandeep Pai, Shankar Raman, M J, S, Vasan V, Venkataswami, Balaji.  2021.  Detection of Malware using Machine Learning based on Operation Code Frequency. 2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT). :214–220.
One of the many methods for identifying malware is to disassemble the malware files and obtain the opcodes from them. Since malware have predominantly been found to contain specific opcode sequences in them, the presence of the same sequences in any incoming file or network content can be taken up as a possible malware identification scheme. Malware detection systems help us to understand more about ways on how malware attack a system and how it can be prevented. The proposed method analyses malware executable files with the help of opcode information by converting the incoming executable files to assembly language thereby extracting opcode information (opcode count) from the same. The opcode count is then converted into opcode frequency which is stored in a CSV file format. The CSV file is passed to various machine learning algorithms like Decision Tree Classifier, Random Forest Classifier and Naive Bayes Classifier. Random Forest Classifier produced the highest accuracy and hence the same model was used to predict whether an incoming file contains a potential malware or not.
Han, Sung-Hwa.  2021.  Analysis of Data Transforming Technology for Malware Detection. 2021 21st ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter). :224–229.
As AI technology advances and its use increases, efforts to incorporate machine learning for malware detection are increasing. However, for malware learning, a standardized data set is required. Because malware is unstructured data, it cannot be directly learned. In order to solve this problem, many studies have attempted to convert unstructured data into structured data. In this study, the features and limitations of each were analyzed by investigating and analyzing the method of converting unstructured data proposed in each study into structured data. As a result, most of the data conversion techniques suggest conversion mechanisms, but the scope of each technique has not been determined. The resulting data set is not suitable for use as training data because it has infinite properties.
Gülmez, Sibel, Sogukpinar, Ibrahim.  2021.  Graph-Based Malware Detection Using Opcode Sequences. 2021 9th International Symposium on Digital Forensics and Security (ISDFS). :1–5.
The impact of malware grows for IT (information technology) systems day by day. The number, the complexity, and the cost of them increase rapidly. While researchers are developing new and better detection algorithms, attackers are also evolving malware to fail the current detection techniques. Therefore malware detection becomes one of the most challenging tasks in cyber security. To increase the performance of the detection techniques, researchers benefit from different approaches. But some of them might cost a lot both in time and hardware resources. This situation puts forward fast and cheap detection methods. In this context, static analysis provides these utilities but it is important to keep detection accuracy high while reducing resource consumption. Opcodes (operational codes) are commonly used in static analysis but sometimes feature extraction from opcodes might be difficult since an opcode sequence might have a great length. Furthermore, most of the malware developers use obfuscation and encryption techniques to avoid detection methods based on static analysis. This kind of malware is called packed malware and according to common belief, packed malware should be either unpacked or analyzed dynamically in order to detect them. In this study, a graph-based malware detection method has been proposed to overcome these problems. The proposed method relies on obtaining the opcode graph of every executable file in the dataset and using them for future extraction. In this way, the proposed method reaches up to 98% detection accuracy. In addition to the accuracy rate, the proposed method makes it possible to detect packed malware without the need for unpacking or dynamic analysis.
Zhang, Ruichao, Wang, Shang, Burton, Renee, Hoang, Minh, Hu, Juhua, Nascimento, Anderson C A.  2021.  Clustering Analysis of Email Malware Campaigns. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :95–102.
The task of malware labeling on real datasets faces huge challenges—ever-changing datasets and lack of ground-truth labels—owing to the rapid growth of malware. Clustering malware on their respective families is a well known tool used for improving the efficiency of the malware labeling process. In this paper, we addressed the challenge of clustering email malware, and carried out a cluster analysis on a real dataset collected from email campaigns over a 13-month period. Our main original contribution is to analyze the usefulness of email’s header information for malware clustering (a novel approach proposed by Burton [1]), and compare it with features collected from the malware directly. We compare clustering based on email header’s information with traditional features extracted from varied resources provided by VirusTotal [2], including static and dynamic analysis. We show that email header information has an excellent performance.
Keyes, David Sean, Li, Beiqi, Kaur, Gurdip, Lashkari, Arash Habibi, Gagnon, Francois, Massicotte, Frédéric.  2021.  EntropLyzer: Android Malware Classification and Characterization Using Entropy Analysis of Dynamic Characteristics. 2021 Reconciling Data Analytics, Automation, Privacy, and Security: A Big Data Challenge (RDAAPS). :1–12.
The unmatched threat of Android malware has tremendously increased the need for analyzing prominent malware samples. There are remarkable efforts in static and dynamic malware analysis using static features and API calls respectively. Nonetheless, there is a void to classify Android malware by analyzing its behavior using multiple dynamic characteristics. This paper proposes EntropLyzer, an entropy-based behavioral analysis technique for classifying the behavior of 12 eminent Android malware categories and 147 malware families taken from CCCS-CIC-AndMal2020 dataset. This work uses six classes of dynamic characteristics including memory, API, network, logcat, battery, and process to classify and characterize Android malware. Results reveal that the entropy-based analysis successfully determines the behavior of all malware categories and most of the malware families before and after rebooting the emulator.
Çelık, Abdullah Emre, Dogru, Ibrahim Alper, Uçtu, Göksel.  2021.  Automatic Generation of Different Malware. 2021 29th Signal Processing and Communications Applications Conference (SIU). :1–4.
The use of mobile devices has increased dramatically in recent years. These smart devices allow us to easily perform many functions such as e-mail, internet, Bluetooth, SMS and MMS without restriction of time and place. Thus, these devices have become an indispensable part of our lives today. Due to this high usage, malware developers have turned to this platform and many mobile malware has emerged in recent years. Many security companies and experts have developed methods to protect our mobile devices. In this study, in order to contribute to mobile malware detection and analysis, an application has been implemented that automatically injects payload into normal apk. With this application, it is aimed to create a data set that can be used by security companies and experts.
Or-Meir, Ori, Cohen, Aviad, Elovici, Yuval, Rokach, Lior, Nissim, Nir.  2021.  Pay Attention: Improving Classification of PE Malware Using Attention Mechanisms Based on System Call Analysis. 2021 International Joint Conference on Neural Networks (IJCNN). :1–8.
Malware poses a threat to computing systems worldwide, and security experts work tirelessly to detect and classify malware as accurately and quickly as possible. Since malware can use evasion techniques to bypass static analysis and security mechanisms, dynamic analysis methods are more useful for accurately analyzing the behavioral patterns of malware. Previous studies showed that malware behavior can be represented by sequences of executed system calls and that machine learning algorithms can leverage such sequences for the task of malware classification (a.k.a. malware categorization). Accurate malware classification is helpful for malware signature generation and is thus beneficial to antivirus vendors; this capability is also valuable to organizational security experts, enabling them to mitigate malware attacks and respond to security incidents. In this paper, we propose an improved methodology for malware classification, based on analyzing sequences of system calls invoked by malware in a dynamic analysis environment. We show that adding an attention mechanism to a LSTM model improves accuracy for the task of malware classification, thus outperforming the state-of-the-art algorithm by up to 6%. We also show that the transformer architecture can be used to analyze very long sequences with significantly lower time complexity for training and prediction. Our proposed method can serve as the basis for a decision support system for security experts, for the task of malware categorization.
2022-02-03
Mafioletti, Diego Rossi, de Mello, Ricardo Carminati, Ruffini, Marco, Frascolla, Valerio, Martinello, Magnos, Ribeiro, Moises R. N..  2021.  Programmable Data Planes as the Next Frontier for Networked Robotics Security: A ROS Use Case. 2021 17th International Conference on Network and Service Management (CNSM). :160—165.
In-Network Computing is a promising field that can be explored to leverage programmable network devices to offload computing towards the edge of the network. This has created great interest in supporting a wide range of network functionality in the data plane. Considering a networked robotics domain, this brings new opportunities to tackle the communication latency challenges. However, this approach opens a room for hardware-level exploits, with the possibility to add a malicious code to the network device in a hidden fashion, compromising the entire communication in the robotic facilities. In this work, we expose vulnerabilities that are exploitable in the most widely used flexible framework for writing robot software, Robot Operating System (ROS). We focus on ROS protocol crossing a programmable SmartNIC as a use case for In-Network Hijacking and In-Network Replay attacks, that can be easily implemented using the P4 language, exposing security vulnerabilities for hackers to take control of the robots or simply breaking the entire system.
2022-01-11
Foster, Rita, Priest, Zach, Cutshaw, Michael.  2021.  Infrastructure eXpression for Codified Cyber Attack Surfaces and Automated Applicability. 2021 Resilience Week (RWS). :1–4.
The internal laboratory directed research and development (LDRD) project Infrastructure eXpression (IX) at the Idaho National Laboratory (INL), is based on codifying infrastructure to support automatic applicability to emerging cyber issues, enabling automated cyber responses, codifying attack surfaces, and analysis of cyber impacts to our nation's most critical infrastructure. IX uses the Structured Threat Information eXpression (STIX) open international standard version 2.1 which supports STIX Cyber Observable (SCO) to codify infrastructure characteristics and exposures. Using these codified infrastructures, STIX Relationship Objects (SRO) connect to STIX Domain Objects (SDO) used for modeling cyber threat used to create attack surfaces integrated with specific infrastructure. This IX model creates a shareable, actionable and implementable attack surface that is updateable with emerging threat or infrastructure modifications. Enrichment of cyber threat information includes attack patterns, indicators, courses of action, malware and threat actors. Codifying infrastructure in IX enables creation of software and hardware bill of materials (SBoM/HBoM) information, analysis of emerging cyber vulnerabilities including supply chain threat to infrastructure.
2022-01-10
Takey, Yuvraj Sanjayrao, Tatikayala, Sai Gopal, Samavedam, Satyanadha Sarma, Lakshmi Eswari, P R, Patil, Mahesh Uttam.  2021.  Real Time early Multi Stage Attack Detection. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:283–290.
In recent times, attackers are continuously developing advanced techniques for evading security, stealing personal financial data, Intellectual Property (IP) and sensitive information. These attacks often employ multiple attack vectors for gaining initial access to the systems. Analysts are often challenged to identify malware objective, initial attack vectors, attack propagation, evading techniques, protective mechanisms and unseen techniques. Most of these attacks are frequently referred to as Multi stage attacks and pose a grave threat to organizations, individuals and the government. Early multistage attack detection is a crucial measure to counter malware and deactivate it. Most traditional security solutions use signature-based detection, which frequently fails to thwart zero-day attacks. Manual analysis of these samples requires enormous effort for effectively counter exponential growth of malware samples. In this paper, we present a novel approach leveraging Machine Learning and MITRE Adversary Tactic Technique and Common knowledge (ATT&CK) framework for early multistage attack detection in real time. Firstly, we have developed a run-time engine that receives notification while malicious executable is downloaded via browser or a launch of a new process in the system. Upon notification, the engine extracts the features from static executable for learning if the executable is malicious. Secondly, we use the MITRE ATT&CK framework, evolved based on the real-world observations of the cyber attacks, that best describes the multistage attack with respect to the adversary Tactics, Techniques and Procedure (TTP) for detecting the malicious executable as well as predict the stages that the malware executes during the attack. Lastly, we propose a real-time system that combines both these techniques for early multistage attack detection. The proposed model has been tested on 6000 unpacked malware samples and it achieves 98 % accuracy. The other major contribution in this paper is identifying the Windows API calls for each of the adversary techniques based on the MITRE ATT&CK.
Ngo, Quoc-Dung, Nguyen, Huy-Trung, Nguyen, Viet-Dung, Dinh, Cong-Minh, Phung, Anh-Tu, Bui, Quy-Tung.  2021.  Adversarial Attack and Defense on Graph-based IoT Botnet Detection Approach. 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). :1–6.
To reduce the risk of botnet malware, methods of detecting botnet malware using machine learning have received enormous attention in recent years. Most of the traditional methods are based on supervised learning that relies on static features with defined labels. However, recent studies show that supervised machine learning-based IoT malware botnet models are more vulnerable to intentional attacks, known as an adversarial attack. In this paper, we study the adversarial attack on PSI-graph based researches. To perform the efficient attack, we proposed a reinforcement learning based method with a trained target classifier to modify the structures of PSI-graphs. We show that PSI-graphs are vulnerable to such attack. We also discuss about defense method which uses adversarial training to train a defensive model. Experiment result achieves 94.1% accuracy on the adversarial dataset; thus, shows that our defensive model is much more robust than the previous target classifier.
Jianhua, Xing, Jing, Si, Yongjing, Zhang, Wei, Li, Yuning, Zheng.  2021.  Research on Malware Variant Detection Method Based on Deep Neural Network. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). :144–147.
To deal with the increasingly serious threat of industrial information malicious code, the simulations and characteristics of the domestic security and controllable operating system and office software were implemented in the virtual sandbox environment based on virtualization technology in this study. Firstly, the serialization detection scheme based on the convolution neural network algorithm was improved. Then, the API sequence was modeled and analyzed by the improved convolution neural network algorithm to excavate more local related information of variant sequences. Finally the variant detection of malicious code was realized. Results showed that this improved method had higher efficiency and accuracy for a large number of malicious code detection, and could be applied to the malicious code detection in security and controllable operating system.
Moonamaldeniya, Menaka, Priyashantha, V.R.S.C., Gunathilake, M.B.N.B., Ransinghe, Y.M.P.B., Ratnayake, A.L.S.D., Abeygunawardhana, Pradeep K.W..  2021.  Prevent Data Exfiltration on Smart Phones Using Audio Distortion and Machine Learning. 2021 Moratuwa Engineering Research Conference (MERCon). :345–350.
Attacks on mobile devices have gained a significant amount of attention lately. This is because more and more individuals are switching to smartphones from traditional non-smartphones. Therefore, attackers or cybercriminals are now getting on the bandwagon to have an opportunity at obtaining information stored on smartphones. In this paper, we present an Android mobile application that will aid to minimize data exfiltration from attacks, such as, Acoustic Side-Channel Attack, Clipboard Jacking, Permission Misuse and Malicious Apps. This paper will commence its inception with an introduction explaining the current issues in general and how attacks such as side-channel attacks and clipboard jacking paved the way for data exfiltration. We will also discuss a few already existing solutions that try to mitigate these problems. Moving on to the methodology we will emphasize how we came about the solution and what methods we followed to achieve the end goal of securing the smartphone. In the final section, we will discuss the outcomes of the project and conclude what needs to be done in the future to enhance this project so that this mobile application will continue to keep the user's data safe from the criminals' grasps.
2021-12-21
Ahn, Bohyun, Bere, Gomanth, Ahmad, Seerin, Choi, JinChun, Kim, Taesic, Park, Sung-won.  2021.  Blockchain-Enabled Security Module for Transforming Conventional Inverters toward Firmware Security-Enhanced Smart Inverters. 2021 IEEE Energy Conversion Congress and Exposition (ECCE). :1307–1312.
As the traditional inverters are transforming toward more intelligent inverters with advanced information and communication technologies, the cyber-attack surface has been remarkably expanded. Specifically, securing firmware of smart inverters from cyber-attacks is crucial. This paper provides expanded firmware attack surface targeting smart inverters. Moreover, this paper proposes a security module for transforming a conventional inverter to a firmware security built-in smart inverter by preventing potential malware and unauthorized firmware update attacks as well as fast automated inverter recovery from zero-day attacks. Furthermore, the proposed security module as a client of blockchain is connected to blockchain severs to fully utilize blockchain technologies such as membership service, ledgers, and smart contracts to detect and mitigate the firmware attacks. The proposed security module framework is implemented in an Internet-of-Thing (IoT) device and validated by experiments.