Visible to the public Biblio

Found 522 results

Filters: Keyword is Malware  [Clear All Filters]
2023-04-14
Safitri, Winda Ayu, Ahmad, Tohari, Hostiadi, Dandy Pramana.  2022.  Analyzing Machine Learning-based Feature Selection for Botnet Detection. 2022 1st International Conference on Information System & Information Technology (ICISIT). :386–391.
In this cyber era, the number of cybercrime problems grows significantly, impacting network communication security. Some factors have been identified, such as malware. It is a malicious code attack that is harmful. On the other hand, a botnet can exploit malware to threaten whole computer networks. Therefore, it needs to be handled appropriately. Several botnet activity detection models have been developed using a classification approach in previous studies. However, it has not been analyzed about selecting features to be used in the learning process of the classification algorithm. In fact, the number and selection of features implemented can affect the detection accuracy of the classification algorithm. This paper proposes an analysis technique for determining the number and selection of features developed based on previous research. It aims to obtain the analysis of using features. The experiment has been conducted using several classification algorithms, namely Decision tree, k-NN, Naïve Bayes, Random Forest, and Support Vector Machine (SVM). The results show that taking a certain number of features increases the detection accuracy. Compared with previous studies, the results obtained show that the average detection accuracy of 98.34% using four features has the highest value from the previous study, 97.46% using 11 features. These results indicate that the selection of the correct number and features affects the performance of the botnet detection model.
Barakat, Ghena, Al-Duwairi, Basheer, Jarrah, Moath, Jaradat, Manar.  2022.  Modeling and Simulation of IoT Botnet Behaviors Using DEVS. 2022 13th International Conference on Information and Communication Systems (ICICS). :42–47.
The ubiquitous nature of the Internet of Things (IoT) devices and their wide-scale deployment have remarkably attracted hackers to exploit weakly-configured and vulnerable devices, allowing them to form large IoT botnets and launch unprecedented attacks. Modeling the behavior of IoT botnets leads to a better understanding of their spreading mechanisms and the state of the network at different levels of the attack. In this paper, we propose a generic model to capture the behavior of IoT botnets. The proposed model uses Markov Chains to study the botnet behavior. Discrete Event System Specifications environment is used to simulate the proposed model.
ISSN: 2573-3346
Borys, Adam, Kamruzzaman, Abu, Thakur, Hasnain Nizam, Brickley, Joseph C., Ali, Md L., Thakur, Kutub.  2022.  An Evaluation of IoT DDoS Cryptojacking Malware and Mirai Botnet. 2022 IEEE World AI IoT Congress (AIIoT). :725–729.
This paper dives into the growing world of IoT botnets that have taken the world by storm in the past five years. Though alone an IP camera cannot produce enough traffic to be considered a DDoS. But a botnet that has over 150,000 connected IP cameras can generate as much as 1 Tbps in traffic. Botnets catch many by surprise because their attacks and infections may not be as apparent as a DDoS, some other cases include using these cameras and printers for extracting information or quietly mine cryptocurrency at the IoT device owner's expense. Here we analyze damages on IoT hacking and define botnet architecture. An overview of Mirai botnet and cryptojacking provided to better understand the IoT botnets.
Tikekar, Priyanka C., Sherekar, Swati S., Thakre, Vilas M..  2022.  An Approach for P2P Based Botnet Detection Using Machine Learning. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). :627–631.
The internet has developed and transformed the world dramatically in recent years, which has resulted in several cyberattacks. Cybersecurity is one of society’s most serious challenge, costing millions of dollars every year. The research presented here will look into this area, focusing on malware that can establish botnets, and in particular, detecting connections made by infected workstations connecting with the attacker’s machine. In recent years, the frequency of network security incidents has risen dramatically. Botnets have previously been widely used by attackers to carry out a variety of malicious activities, such as compromising machines to monitor their activities by installing a keylogger or sniffing traffic, launching Distributed Denial of Service (DDOS) attacks, stealing the identity of the machine or credentials, and even exfiltrating data from the user’s computer. Botnet detection is still a work in progress because no one approach exists that can detect a botnet’s whole ecosystem. A detailed analysis of a botnet, discuss numerous parameter’s result of detection methods related to botnet attacks, as well as existing work of botnet identification in field of machine learning are discuss here. This paper focuses on the comparative analysis of various classifier based on design of botnet detection technique which are able to detect P2P botnet using machine learning classifier.
2023-03-17
Hasnaeen, Shah Md Nehal, Chrysler, Andrew.  2022.  Detection of Malware in UHF RFID User Memory Bank using Random Forest Classifier on Signal Strength Data in the Frequency Domain. 2022 IEEE International Conference on RFID (RFID). :47–52.
A method of detecting UHF RFID tags with SQL in-jection virus code written in its user memory bank is explored. A spectrum analyzer took signal strength readings in the frequency spectrum while an RFID reader was reading the tag. The strength of the signal transmitted by the RFID tag in the UHF range, more specifically within the 902–908 MHz sub-band, was used as data to train a Random Forest model for Malware detection. Feature reduction is accomplished by dividing the observed spectrum into 15 ranges with a bandwidth of 344 kHz each and detecting the number of maxima in each range. The malware-infested tag could be detected more than 80% of the time. The frequency ranges contributing most in this detection method were the low (903.451-903.795 MHz, 902.418-902.762 MHz) and high (907.238-907.582 MHz) bands in the observed spectrum.
ISSN: 2573-7635
2023-03-03
Zadeh Nojoo Kambar, Mina Esmail, Esmaeilzadeh, Armin, Kim, Yoohwan, Taghva, Kazem.  2022.  A Survey on Mobile Malware Detection Methods using Machine Learning. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0215–0221.
The prevalence of mobile devices (smartphones) along with the availability of high-speed internet access world-wide resulted in a wide variety of mobile applications that carry a large amount of confidential information. Although popular mobile operating systems such as iOS and Android constantly increase their defenses methods, data shows that the number of intrusions and attacks using mobile applications is rising continuously. Experts use techniques to detect malware before the malicious application gets installed, during the runtime or by the network traffic analysis. In this paper, we first present the information about different categories of mobile malware and threats; then, we classify the recent research methods on mobile malware traffic detection.
Zhou, Ziyi, Han, Xing, Chen, Zeyuan, Nan, Yuhong, Li, Juanru, Gu, Dawu.  2022.  SIMulation: Demystifying (Insecure) Cellular Network based One-Tap Authentication Services. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :534–546.
A recently emerged cellular network based One-Tap Authentication (OTAuth) scheme allows app users to quickly sign up or log in to their accounts conveniently: Mobile Network Operator (MNO) provided tokens instead of user passwords are used as identity credentials. After conducting a first in-depth security analysis, however, we have revealed several fundamental design flaws among popular OTAuth services, which allow an adversary to easily (1) perform unauthorized login and register new accounts as the victim, (2) illegally obtain identities of victims, and (3) interfere OTAuth services of legitimate apps. To further evaluate the impact of our identified issues, we propose a pipeline that integrates both static and dynamic analysis. We examined 1,025/894 Android/iOS apps, each app holding more than 100 million installations. We confirmed 396/398 Android/iOS apps are affected. Our research systematically reveals the threats against OTAuth services. Finally, we provide suggestions on how to mitigate these threats accordingly.
ISSN: 2158-3927
Agarwal, Shubham, Sable, Arjun, Sawant, Devesh, Kahalekar, Sunil, Hanawal, Manjesh K..  2022.  Threat Detection and Response in Linux Endpoints. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :447–449.
We demonstrate an in-house built Endpoint Detection and Response (EDR) for linux systems using open-sourced tools like Osquery and Elastic. The advantage of building an in-house EDR tools against using commercial EDR tools provides both the knowledge and the technical capability to detect and investigate security incidents. We discuss the architecture of the tools and advantages it offers. Specifically, in our method all the endpoint logs are collected at a common server which we leverage to perform correlation between events happening on different endpoints and automatically detect threats like pivoting and lateral movements. We discuss various attacks that can be detected by our tool.
ISSN: 2155-2509
2023-02-17
Haider, Ammar, Bhatti, Wafa.  2022.  Importance of Cyber Security in Software Quality Assurance. 2022 17th International Conference on Emerging Technologies (ICET). :6–11.

The evolving and new age cybersecurity threats has set the information security industry on high alert. This modern age cyberattacks includes malware, phishing, artificial intelligence, machine learning and cryptocurrency. Our research highlights the importance and role of Software Quality Assurance for increasing the security standards that will not just protect the system but will handle the cyber-attacks better. With the series of cyber-attacks, we have concluded through our research that implementing code review and penetration testing will protect our data's integrity, availability, and confidentiality. We gathered user requirements of an application, gained a proper understanding of the functional as well as non-functional requirements. We implemented conventional software quality assurance techniques successfully but found that the application software was still vulnerable to potential issues. We proposed two additional stages in software quality assurance process to cater with this problem. After implementing this framework, we saw that maximum number of potential threats were already fixed before the first release of the software.

Kaura, Cheerag, Sindhwani, Nidhi, Chaudhary, Alka.  2022.  Analysing the Impact of Cyber-Threat to ICS and SCADA Systems. 2022 International Mobile and Embedded Technology Conference (MECON). :466–470.
The aim of this paper is to examine noteworthy cyberattacks that have taken place against ICS and SCADA systems and to analyse them. This paper also proposes a new classification scheme based on the severity of the attack. Since the information revolution, computers and associated technologies have impacted almost all aspects of daily life, and this is especially true of the industrial sector where one of the leading trends is that of automation. This widespread proliferation of computers and computer networks has also made it easier for malicious actors to gain access to these systems and networks and carry out harmful activities.
Ruaro, Nicola, Pagani, Fabio, Ortolani, Stefano, Kruegel, Christopher, Vigna, Giovanni.  2022.  SYMBEXCEL: Automated Analysis and Understanding of Malicious Excel 4.0 Macros. 2022 IEEE Symposium on Security and Privacy (SP). :1066–1081.
Malicious software (malware) poses a significant threat to the security of our networks and users. In the ever-evolving malware landscape, Excel 4.0 Office macros (XL4) have recently become an important attack vector. These macros are often hidden within apparently legitimate documents and under several layers of obfuscation. As such, they are difficult to analyze using static analysis techniques. Moreover, the analysis in a dynamic analysis environment (a sandbox) is challenging because the macros execute correctly only under specific environmental conditions that are not always easy to create. This paper presents SYMBEXCEL, a novel solution that leverages symbolic execution to deobfuscate and analyze Excel 4.0 macros automatically. Our approach proceeds in three stages: (1) The malicious document is parsed and loaded in memory; (2) Our symbolic execution engine executes the XL4 formulas; and (3) Our Engine concretizes any symbolic values encountered during the symbolic exploration, therefore evaluating the execution of each macro under a broad range of (meaningful) environment configurations. SYMBEXCEL significantly outperforms existing deobfuscation tools, allowing us to reliably extract Indicators of Compromise (IoCs) and other critical forensics information. Our experiments demonstrate the effectiveness of our approach, especially in deobfuscating novel malicious documents that make heavy use of environment variables and are often not identified by commercial anti-virus software.
ISSN: 2375-1207
Rekeraho, Alexandre, Balan, Titus, Cotfas, Daniel T., Cotfas, Petru A., Acheampong, Rebecca, Musuroi, Cristian.  2022.  Sandbox Integrated Gateway for the Discovery of Cybersecurity Vulnerabilities. 2022 International Symposium on Electronics and Telecommunications (ISETC). :1–4.
Emails are widely used as a form of communication and sharing files in an organization. However, email is widely used by cybercriminals to spread malware and carrying out cyber-attacks. We implemented an open-source email gateway in conjunction with a security sandbox for securing emails against malicious attachments. The email gateway scans all incoming and outgoing emails and stops emails containing suspicious files. An automated python script would then send the suspected email to the sandboxing element through sandbox API for further analysis, while the script is used also for the prevention of duplicate results. Moreover, the mail server administrator receives notifications from the email gateway about suspicious attachments. If detected attachment is a true positive based on the sandbox analysis result, email is deleted, otherwise, the email is delivered to the recipient. The paper describes in an empirical way the steps followed during the implementation, results, and conclusions of our research.
ISSN: 2475-7861
Maddamsetty, Saketh, Tharwani, Ayush, Mishra, Debadatta.  2022.  MicroBlind: Flexible and Secure File System Middleware for Application Sandboxes. 2022 IEEE International Conference on Cloud Engineering (IC2E). :221–232.
Virtual machine (VM) based application sandboxes leverage strong isolation guarantees of virtualization techniques to address several security issues through effective containment of malware. Specifically, in end-user physical hosts, potentially vulnerable applications can be isolated from each other (and the host) using VM based sandboxes. However, sharing data across applications executing within different sandboxes is a non-trivial requirement for end-user systems because at the end of the day, all applications are used by the end-user owning the device. Existing file sharing techniques compromise the security or efficiency, especially considering lack of technical expertise of many end-users in the contemporary times. In this paper, we propose MicroBlind, a security hardened file sharing framework for virtualized sandboxes to support efficient data sharing across different application sandboxes. MicroBlind enables a simple file sharing management API for end users where the end user can orchestrate file sharing across different VM sandboxes in a secure manner. To demonstrate the efficacy of MicroBlind, we perform comprehensive empirical analysis against existing data sharing techniques (augmented for the sandboxing setup) and show that MicroBlind provides improved security and efficiency.
Yang, Jin, Liu, Yunqing.  2022.  Countermeasure Against Anti-Sandbox Technology Based on Activity Recognition. 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA). :834–839.
In order to prevent malicious environment, more and more applications use anti-sandbox technology to detect the running environment. Malware often uses this technology against analysis, which brings great difficulties to the analysis of applications. Research on anti-sandbox countermeasure technology based on application virtualization can solve such problems, but there is no good solution for sensor simulation. In order to prevent detection, most detection systems can only use real device sensors, which brings great hidden dangers to users’ privacy. Aiming at this problem, this paper proposes and implements a sensor anti-sandbox countermeasure technology for Android system. This technology uses the CNN-LSTM model to identify the activity of the real machine sensor data, and according to the recognition results, the real machine sensor data is classified and stored, and then an automatic data simulation algorithm is designed according to the stored data, and finally the simulation data is sent back by using the Hook technology for the application under test. The experimental results show that the method can effectively simulate the data characteristics of the acceleration sensor and prevent the triggering of anti-sandbox behaviors.
Wei, Lizhuo, Xu, Fengkai, Zhang, Ni, Yan, Wei, Chai, Chuchu.  2022.  Dynamic malicious code detection technology based on deep learning. 2022 20th International Conference on Optical Communications and Networks (ICOCN). :1–3.
In this paper, the malicious code is run in the sandbox in a safe and controllable environment, the API sequence is deduplicated by the idea of the longest common subsequence, and the CNN and Bi-LSTM are integrated to process and analyze the API sequence. Compared with the method, the method using deep learning can have higher accuracy and work efficiency.
Radis, Alexandre Henrique, Costa Gondim, João José, Café, Daniel Chaves.  2022.  Proposed Security Measures for Code Injection for CubeSats. 2022 Workshop on Communication Networks and Power Systems (WCNPS). :1–7.
Sometimes we have the need to inject new services in an operational satellite, but as the injection of new codes in equipment that has communication link is a critical process due to the possibility of injection of broke or malicious codes, this document proposes a protocol for the safe injection of code in satellite microcontrollers of the CubeSat’ type. This protocol is based on the use of HMAC with SHA-3 to guarantee integrity and authenticity and is enhanced by the same security measures to mitigate communication link problems and satellite attacks, such as the guarantee of delivery and displacement between communication windows and periods of high processing.
Dhavlle, Abhijitt, Rafatirad, Setareh, Homayoun, Houman, Dinakarrao, Sai Manoj Pudukotai.  2022.  CR-Spectre: Defense-Aware ROP Injected Code-Reuse Based Dynamic Spectre. 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). :508–513.
Side-channel attacks have been a constant threat to computing systems. In recent times, vulnerabilities in the architecture were discovered and exploited to mount and execute a state-of-the-art attack such as Spectre. The Spectre attack exploits a vulnerability in the Intel-based processors to leak confidential data through the covert channel. There exist some defenses to mitigate the Spectre attack. Among multiple defenses, hardware-assisted attack/intrusion detection (HID) systems have received overwhelming response due to its low overhead and efficient attack detection. The HID systems deploy machine learning (ML) classifiers to perform anomaly detection to determine whether the system is under attack. For this purpose, a performance monitoring tool profiles the applications to record hardware performance counters (HPC), utilized for anomaly detection. Previous HID systems assume that the Spectre is executed as a standalone application. In contrast, we propose an attack that dynamically generates variations in the injected code to evade detection. The attack is injected into a benign application. In this manner, the attack conceals itself as a benign application and gen-erates perturbations to avoid detection. For the attack injection, we exploit a return-oriented programming (ROP)-based code-injection technique that reuses the code, called gadgets, present in the exploited victim's (host) memory to execute the attack, which, in our case, is the CR-Spectre attack to steal sensitive data from a target victim (target) application. Our work focuses on proposing a dynamic attack that can evade HID detection by injecting perturbations, and its dynamically generated variations thereof, under the cloak of a benign application. We evaluate the proposed attack on the MiBench suite as the host. From our experiments, the HID performance degrades from 90% to 16%, indicating our Spectre-CR attack avoids detection successfully.
2023-02-03
Samuel, Henry D, Kumar, M Santhanam, Aishwarya, R., Mathivanan, G..  2022.  Automation Detection of Malware and Stenographical Content using Machine Learning. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :889–894.
In recent times, the occurrence of malware attacks are increasing at an unprecedented rate. Particularly, the image-based malware attacks are spreading worldwide and many people get harmful malware-based images through the technique called steganography. In the existing system, only open malware and files from the internet can be identified. However, the image-based malware cannot be identified and detected. As a result, so many phishers make use of this technique and exploit the target. Social media platforms would be totally harmful to the users. To avoid these difficulties, Machine learning can be implemented to find the steganographic malware images (contents). The proposed methodology performs an automatic detection of malware and steganographic content by using Machine Learning. Steganography is used to hide messages from apparently innocuous media (e.g., images), and steganalysis is the approach used for detecting this malware. This research work proposes a machine learning (ML) approach to perform steganalysis. In the existing system, only open malware and files from the internet are identified but in the recent times many people get harmful malware-based images through the technique called steganography. Social media platforms would be totally harmful to the users. To avoid these difficulties, the proposed Machine learning has been developed to appropriately detect the steganographic malware images (contents). Father, the steganalysis method using machine learning has been developed for performing logistic classification. By using this, the users can avoid sharing the malware images in social media platforms like WhatsApp, Facebook without downloading it. It can be also used in all the photo-sharing sites such as google photos.
2023-02-02
El Mouhib, Manal, Azghiou, Kamal, Benali, Abdelhamid.  2022.  Connected and Autonomous Vehicles against a Malware Spread : A Stochastic Modeling Approach. 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1–6.
The proliferation of autonomous and connected vehicles on our roads is increasingly felt. However, the problems related to the optimization of the energy consumed, to the safety, and to the security of these do not cease to arise on the tables of debates bringing together the various stakeholders. By focusing on the security aspect of such systems, we can realize that there is a family of problems that must be investigated as soon as possible. In particular, those that may manifest as the system expands. Therefore, this work aims to model and simulate the behavior of a system of autonomous and connected vehicles in the face of a malware invasion. In order to achieve the set objective, we propose a model to our system which is inspired by those used in epidimology, such as SI, SIR, SIER, etc. This being adapted to our case study, stochastic processes are defined in order to characterize its dynamics. After having fixed the values of the various parameters, as well as those of the initial conditions, we run 100 simulations of our system. After which we visualize the results got, we analyze them, and we give some interpretations. We end by outlining the lessons and recommendations drawn from the results.
Samhi, Jordan, Gao, Jun, Daoudi, Nadia, Graux, Pierre, Hoyez, Henri, Sun, Xiaoyu, Allix, Kevin, Bissyandè, Tegawende F., Klein, Jacques.  2022.  JuCify: A Step Towards Android Code Unification for Enhanced Static Analysis. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :1232–1244.
Native code is now commonplace within Android app packages where it co-exists and interacts with Dex bytecode through the Java Native Interface to deliver rich app functionalities. Yet, state-of-the-art static analysis approaches have mostly overlooked the presence of such native code, which, however, may implement some key sensitive, or even malicious, parts of the app behavior. This limitation of the state of the art is a severe threat to validity in a large range of static analyses that do not have a complete view of the executable code in apps. To address this issue, we propose a new advance in the ambitious research direction of building a unified model of all code in Android apps. The JUCIFY approach presented in this paper is a significant step towards such a model, where we extract and merge call graphs of native code and bytecode to make the final model readily-usable by a common Android analysis framework: in our implementation, JUCIFY builds on the Soot internal intermediate representation. We performed empirical investigations to highlight how, without the unified model, a significant amount of Java methods called from the native code are “unreachable” in apps' callgraphs, both in goodware and malware. Using JUCIFY, we were able to enable static analyzers to reveal cases where malware relied on native code to hide invocation of payment library code or of other sensitive code in the Android framework. Additionally, JUCIFY'S model enables state-of-the-art tools to achieve better precision and recall in detecting data leaks through native code. Finally, we show that by using JUCIFY we can find sensitive data leaks that pass through native code.
Aggarwal, Naman, Aggarwal, Pradyuman, Gupta, Rahul.  2022.  Static Malware Analysis using PE Header files API. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :159–162.
In today’s fast pacing world, cybercrimes have time and again proved to be one of the biggest hindrances in national development. According to recent trends, most of the times the victim’s data is breached by trapping it in a phishing attack. Security and privacy of user’s data has become a matter of tremendous concern. In order to address this problem and to protect the naive user’s data, a tool which may help to identify whether a window executable is malicious or not by doing static analysis on it has been proposed. As well as a comparative study has been performed by implementing different classification models like Logistic Regression, Neural Network, SVM. The static analysis approach used takes into parameters of the executables, analysis of properties obtained from PE Section Headers i.e. API calls. Comparing different model will provide the best model to be used for static malware analysis
2023-01-20
Shi, Zhixin, Wang, Xiangyu, Liu, Pengcheng.  2022.  NBP-MS: Malware Signature Generation Based on Network Behavior Profiling. 2022 26th International Conference on Pattern Recognition (ICPR). :1865–1870.
With the proliferation of malware, the detection and classification of malware have been hot topics in the academic and industrial circles of cyber security, and the generation of malware signatures is one of the important research directions. In this paper, we propose NBP-MS, a method of signature generation that is based on network traffic generated by malware. Specifically, we utilize the network traffic generated by malware to perform fine-grained profiling of its network behaviors first, and then cluster all the profiles to generate network behavior signatures to classify malware, providing support for subsequent analysis and defense.
Fujii, Shota, Kawaguchi, Nobutaka, Kojima, Shoya, Suzuki, Tomoya, Yamauchi, Toshihiro.  2022.  Design and Implementation of System for URL Signature Construction and Impact Assessment. 2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI). :95–100.
The attacker’s server plays an important role in sending attack orders and receiving stolen information, particularly in the more recent cyberattacks. Under these circumstances, it is important to use network-based signatures to block malicious communications in order to reduce the damage. However, in addition to blocking malicious communications, signatures are also required not to block benign communications during normal business operations. Therefore, the generation of signatures requires a high level of understanding of the business, and highly depends on individual skills. In addition, in actual operation, it is necessary to test whether the generated signatures do not interfere with benign communications, which results in high operational costs. In this paper, we propose SIGMA, a system that automatically generates signatures to block malicious communication without interfering with benign communication and then automatically evaluates the impact of the signatures. SIGMA automatically extracts the common parts of malware communication destinations by clustering them and generates multiple candidate signatures. After that, SIGMA automatically calculates the impact on normal communication based on business logs, etc., and presents the final signature to the analyst, which has the highest blockability of malicious communication and non-blockability of normal communication. Our objectives with this system are to reduce the human factor in generating the signatures, reduce the cost of the impact evaluation, and support the decision of whether to apply the signatures. In the preliminary evaluation, we showed that SIGMA can automatically generate a set of signatures that detect 100% of suspicious URLs with an over-detection rate of just 0.87%, using the results of 14,238 malware analyses and actual business logs. This result suggests that the cost for generation of signatures and the evaluation of their impact on business operations can be suppressed, which used to be a time-consuming and human-intensive process.
2023-01-06
Guri, Mordechai.  2022.  ETHERLED: Sending Covert Morse Signals from Air-Gapped Devices via Network Card (NIC) LEDs. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :163—170.
Highly secure devices are often isolated from the Internet or other public networks due to the confidential information they process. This level of isolation is referred to as an ’air-gap .’In this paper, we present a new technique named ETHERLED, allowing attackers to leak data from air-gapped networked devices such as PCs, printers, network cameras, embedded controllers, and servers. Networked devices have an integrated network interface controller (NIC) that includes status and activity indicator LEDs. We show that malware installed on the device can control the status LEDs by blinking and alternating colors, using documented methods or undocumented firmware commands. Information can be encoded via simple encoding such as Morse code and modulated over these optical signals. An attacker can intercept and decode these signals from tens to hundreds of meters away. We show an evaluation and discuss defensive and preventive countermeasures for this exfiltration attack.
Khalid, Saneeha, Hussain, Faisal Bashir.  2022.  Evaluating Opcodes for Detection of Obfuscated Android Malware. 2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :044—049.
Obfuscation refers to changing the structure of code in a way that original semantics can be hidden. These techniques are often used by application developers for code hardening but it has been found that obfuscation techniques are widely used by malware developers in order to hide the work flow and semantics of malicious code. Class Encryption, Code Re-Ordering, Junk Code insertion and Control Flow modifications are Code Obfuscation techniques. In these techniques, code of the application is changed. These techniques change the signature of the application and also affect the systems that use sequence of instructions in order to detect maliciousness of an application. In this paper an ’Opcode sequence’ based detection system is designed and tested against obfuscated samples. It has been found that the system works efficiently for the detection of non obfuscated samples but the performance is effected significantly against obfuscated samples. The study tests different code obfuscation schemes and reports the effect of each on sequential opcode based analytic system.