Hassell, Suzanne, Beraud, Paul, Cruz, Alen, Ganga, Gangadhar, Martin, Steve, Toennies, Justin, Vazquez, Pablo, Wright, Gary, Gomez, Daniel, Pietryka, Frank et al..
2012.
Evaluating network cyber resiliency methods using cyber threat, Vulnerability and Defense Modeling and Simulation. MILCOM 2012 - 2012 IEEE Military Communications Conference. :1—6.
This paper describes a Cyber Threat, Vulnerability and Defense Modeling and Simulation tool kit used for evaluation of systems and networks to improve cyber resiliency. This capability is used to help increase the resiliency of networks at various stages of their lifecycle, from initial design and architecture through the operation of deployed systems and networks. Resiliency of computer systems and networks to cyber threats is facilitated by the modeling of agile and resilient defenses versus threats and running multiple simulations evaluated against resiliency metrics. This helps network designers, cyber analysts and Security Operations Center personnel to perform trades using what-if scenarios to select resiliency capabilities and optimally design and configure cyber resiliency capabilities for their systems and networks.
Sanjab, Anibal, Saad, Walid.
2016.
On Bounded Rationality in Cyber-Physical Systems Security: Game-Theoretic Analysis with Application to Smart Grid Protection. 2016 Joint Workshop on Cyber- Physical Security and Resilience in Smart Grids (CPSR-SG). :1–6.
In this paper, a general model for cyber-physical systems (CPSs), that captures the diffusion of attacks from the cyber layer to the physical system, is studied. In particular, a game-theoretic approach is proposed to analyze the interactions between one defender and one attacker over a CPS. In this game, the attacker launches cyber attacks on a number of cyber components of the CPS to maximize the potential harm to the physical system while the system operator chooses to defend a number of cyber nodes to thwart the attacks and minimize potential damage to the physical side. The proposed game explicitly accounts for the fact that both attacker and defender can have different computational capabilities and disparate levels of knowledge of the system. To capture such bounded rationality of attacker and defender, a novel approach inspired from the behavioral framework of cognitive hierarchy theory is developed. In this framework, the defender is assumed to be faced with an attacker that can have different possible thinking levels reflecting its knowledge of the system and computational capabilities. To solve the game, the optimal strategies of each attacker type are characterized and the optimal response of the defender facing these different types is computed. This general approach is applied to smart grid security considering wide area protection with energy markets implications. Numerical results show that a deviation from the Nash equilibrium strategy is beneficial when the bounded rationality of the attacker is considered. Moreover, the results show that the defender's incentive to deviate from the Nash equilibrium decreases when faced with an attacker that has high computational ability.
Bhattacharjee, Arpan, Badsha, Shahriar, Hossain, Md Tamjid, Konstantinou, Charalambos, Liang, Xueping.
2021.
Vulnerability Characterization and Privacy Quantification for Cyber-Physical Systems. 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing Communications (GreenCom) and IEEE Cyber, Physical Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :217–223.
Cyber-physical systems (CPS) data privacy protection during sharing, aggregating, and publishing is a challenging problem. Several privacy protection mechanisms have been developed in the literature to protect sensitive data from adversarial analysis and eliminate the risk of re-identifying the original properties of shared data. However, most of the existing solutions have drawbacks, such as (i) lack of a proper vulnerability characterization model to accurately identify where privacy is needed, (ii) ignoring data providers privacy preference, (iii) using uniform privacy protection which may create inadequate privacy for some provider while over-protecting others, and (iv) lack of a comprehensive privacy quantification model assuring data privacy-preservation. To address these issues, we propose a personalized privacy preference framework by characterizing and quantifying the CPS vulnerabilities as well as ensuring privacy. First, we introduce a Standard Vulnerability Profiling Library (SVPL) by arranging the nodes of an energy-CPS from maximum to minimum vulnerable based on their privacy loss. Based on this model, we present our personalized privacy framework (PDP) in which Laplace noise is added based on the individual node's selected privacy preferences. Finally, combining these two proposed methods, we demonstrate that our privacy characterization and quantification model can attain better privacy preservation by eliminating the trade-off between privacy, utility, and risk of losing information.
Qingxue, Meng, Jiajun, Lin.
2014.
The Modeling and Simulation of Vehicle Distance Control Based on Cyber-Physical System. 2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference. :341–345.
With the advent of motorization, result in traffic system more congested, how to make the traffic system more effective and also take safety into account, namely build a intelligent transportation system, has become a hot spot of society. The vehicle distance control system studied in this paper is an important function in intelligent transportation system, through introducing cyber-physical systems (CPS) technology into it, set up system model, make the vehicles maintain a preset safety distance, thereby not only help improve the effective utilization of traffic system, but also help avoid the collision due to the speed change. Finally, use Simulink software to simulate and analyze the performance of the system, the result shows that the model can effectively cope with the distance change which is due to speed change, and ensure the vehicles maintain a preset safety distance within a short period of time.
Junjie, Tang, Jianjun, Zhao, Jianwan, Ding, Liping, Chen, Gang, Xie, Bin, Gu, Mengfei, Yang.
2012.
Cyber-Physical Systems Modeling Method Based on Modelica. 2012 IEEE Sixth International Conference on Software Security and Reliability Companion. :188–191.
Cyber-physical systems (CPS) is an integration of computation with physical systems and physical processes. It is widely used in energy, health and other industrial areas. Modeling and simulation is of the greatest challenges in CPS research. Modelica has a great potentiality in the modeling and simulation of CPS. We analyze the characteristics and requirements of CPS modeling, and also the features of Modelica in the paper. In respect of information model, physical model and model interface, this paper introduces a unified modeling method for CPS, based on Modelica. The method provides a reliable foundation for the design, analysis and verification of CPS.
Jun, Shen, Cuibo, Yu.
2013.
The Study on the Self-Similarity and Simulation of CPS Traffic. 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing. :215–219.
CPS traffic characteristics is one of key techniques of Cyber-Physical Systems (CPS). A deep research of CPS network traffic characteristics can help to better plan and design CPS networks. A brief overview of the key concepts of CPS is firstly presented. Then CPS application scenarios are analyzed in details and classified. The characteristics of CPS traffic is analyzed theoretically for different CPS application scenarios. At last, the characteristics of CPS traffic is verified using NS-2 simulation.
Falcone, Alberto, Garro, Alfredo.
2020.
Pitfalls and Remedies in Modeling and Simulation of Cyber Physical Systems. 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT). :1–5.
The ever-growing advances in science and technology have led to a rapid increase in the complexity of most engineered systems. Cyber-physical Systems (CPSs) are the result of this technology advancement that involves new paradigms, architectures and functionalities derived from different engineering domains. Due to the nature of CPSs, which are composed of many heterogeneous components that constantly interact one another and with the environment, it is difficult to study, explain hypothesis and evaluate design alternatives without using Modeling and Simulation (M&S) approaches. M&S is increasingly used in the CPS domain with different objectives; however, its adoption is not easy and straightforward but can lead to pitfalls that need to be recognized and addressed. This paper identifies some important pitfalls deriving from the application of M&S approaches to the CPS study and presents remedies, which are already available in the literature, to prevent and face them.
Wang, Yuying, Zhou, Xingshe, Liang, Dongfang.
2012.
Study on Integrated Modeling Methods toward Co-Simulation of Cyber-Physical System. 2012 IEEE 14th International Conference on High Performance Computing and Communication 2012 IEEE 9th International Conference on Embedded Software and Systems. :1736–1740.
Cyber-physical systems are particularly difficult to model and simulate because their components mix many different system modalities. In this paper we address the main technical challenges on system simulation taking into account by new characters of CPS, and provide a comprehensive view of the simulation modeling methods for integration of continuous-discrete model. Regards to UML and Simulink, two most widely accepted modeling methods in industrial designs, we study on three methods to perform the cooperation of these two kinds of heterogeneous models for co-simulation. The solution of an implementation of co-simulation method for CPS was designed under three levels architecture.
Zhang, Kailong, Li, Jiwei, Lu, Zhou, Luo, Mei, Wu, Xiao.
2013.
A Scene-Driven Modeling Reconfigurable Hardware-in-Loop Simulation Environment for the Verification of an Autonomous CPS. 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics. 1:446–451.
Cyber-Physical System(CPS) is now a new evolutional morphology of embedded systems. With features of merging computation and physical processes together, the traditional verification and simulation methods have being challenged recently. After analyzed the state-of-art of related research, a new simulation environment is studied according to the characters of a special autonomous cyber-physical system-Unmanned Aerial Vehicle, and designed to be scene-driven, modeling and reconfigurable. In this environment, a novel CPS-in-loop architecture, which can support simulations under different customized scenes, is studied firstly to ensure its opening and flexibility. And as another foundation, some dynamics models of CPS and atmospheric ones of relative sensors are introduced to simulate the motion of CPS and the change of its posture. On the basis above, the reconfigurable scene-driven mechanisms that are Based on hybrid events are mainly excogitated. Then, different scenes can be configured in terms of special verification requirements, and then each scene will be decomposed into a spatio-temporal event sequence and scheduled by a scene executor. With this environment, not only the posture of CPS, but also the autonomy of its behavior can be verified and observed. It will be meaningful for the design of such autonomous CPS.
Deschamps, Henrick, Cappello, Gerlando, Cardoso, Janette, Siron, Pierre.
2017.
Toward a Formalism to Study the Scheduling of Cyber-Physical Systems Simulations. 2017 IEEE/ACM 21st International Symposium on Distributed Simulation and Real Time Applications (DS-RT). :1–8.
This paper presents ongoing work on the formalism of Cyber-Physical Systems (CPS) simulations. These systems are distributed real-time systems, and their simulations might be distributed or not. In this paper, we propose a model to describe the modular components forming a simulation of a CPS. The main goal is to introduce a model of generic simulation distributed architecture, on which we are able to execute a logical architecture of simulation. This architecture of simulation allows the expression of structural and behavioural constraints on the simulation, abstracting its execution. We will propose two implementations of the execution architecture based on generic architectures of distributed simulation: $\cdot$ The High Level Architecture (HLA), an IEEE standard for distributed simulation, and one of its open-source implementation of RunTime Infrastructure (RTI): CERTI. $\cdot$ The Distributed Simulation Scheduler (DSS), an Airbus framework scheduling predefined models. Finally, we present the initial results obtained applying our formalism to the open-source case study from the ROSACE case study.