Kayalvizhy, V., Banumathi, A..
2021.
A Survey on Cyber Security Attacks and Countermeasures in Smart Grid Metering Network. 2021 5th International Conference on Computing Methodologies and Communication (ICCMC). :160—165.
Smart grid (SG) network is one of the recently improved networks of tangled entities, objects, and smart metering infrastructure (SMI). It plays a vital part in sensing, acquiring, observing, aggregating, controlling, and dealing with various kinds of fields in SG. The SMI or advanced metering infrastructure (AMI) is proposed to make available a real-time transmissions connection among users and services are Time of use (TOU), Real time pricing (RTP), Critical Peak Pricing (CPP). In adding to, additional benefit of SMs is which are capable to report back to the service control center in near real time nontechnical losses (for instance, tampering with meters, bypassing meters, and illicit tapping into distribution systems). SMI supports two-way transmission meters reading electrical utilization at superior frequency. This data is treated in real time and signals send to manage demand. This paper expresses a transitory impression of cyberattack instances in customary energy networks and SMI. This paper presents cyber security attacks and countermeasures in Smart Grid Metering Network (SGMN). Based on the existing survey threat models, a number of proposed ways have been planned to deal with all threats in the formulation of the secrecy and privacy necessities of SG measurement network.
Shukla, Saurabh, Thakur, Subhasis, Breslin, John G..
2021.
Secure Communication in Smart Meters using Elliptic Curve Cryptography and Digital Signature Algorithm. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :261—266.
With the advancement in the growth of Internet-of-Things (IoT), its number of applications has also increased such as in healthcare, smart cities, vehicles, industries, household appliances, and Smart Grids (SG). One of the major applications of IoT is the SG and smart meter which consists of a large number of internet-connected sensors and can communicate bi-directionally in real-time. The SG network involves smart meters, data collectors, generators, and sensors connected with the internet. SG networks involve the generation, distribution, transmission, and consumption of electrical power supplies. It consists of Household Area Network (HAN), and Neighborhood Area Network (NAN) for communication. Smart meters can communicate bidirectionally with consumers and provide real-time information to utility offices. But this communication channel is a wide-open network for data transmission. Therefore, it makes the SG network and smart meter vulnerable to outside hacker and various Cyber-Physical System (CPS) attacks such as False Data Injection (FDI), inserting malicious data, erroneous data, manipulating the sensor reading values. Here cryptography techniques can play a major role along with the private blockchain model for secure data transmission in smart meters. Hence, to overcome these existing issues and challenges in smart meter communication we have proposed a blockchain-based system model for secure communication along with a novel Advanced Elliptic Curve Cryptography Digital Signature (AECCDS) algorithm in Fog Computing (FC) environment. Here FC nodes will work as miners at the edge of smart meters for secure and real-time communication. The algorithm is implemented using iFogSim, Geth version 1.9.25, Ganache, Truffle for compiling smart contracts, Anaconda (Python editor), and ATOM as language editor for the smart contracts.
Khlobystova, Anastasiia O., Abramov, Maxim V..
2021.
Adaptation of the Multi-pass social Engineering Attack Model Taking into Account Informational Influence. 2021 XXIV International Conference on Soft Computing and Measurements (SCM). :49–51.
One of the measures to prevent multi-pass social engineering attacks is to identify the chains of user, which are most susceptible to such attacks. The aim of the study is to combine a mathematical model for estimating the probability of success of the propagation of a multi-pass social engineering attack between users with a model for calculating information influence. Namely, it is proposed to include in estimating the intensity of interactions between users (which used in the model of the propagation of a multi-pass social engineering attack) estimating of power of influence actions of agents. The scientific significance of the work consists in the development of a mathematical structure for modeling the actions of an attacker-social engineer and creating a foundation for the subsequent analysis of the social graph of the organization's employees. The practical significance lies in the formation of opportunities for decision-makers. Therefore, they will be able to take more precise measures for increase the level of security as individual employees as the organization generally.