Visible to the public Biblio

Found 721 results

Filters: Keyword is Computational modeling  [Clear All Filters]
2022-08-26
Chawla, Kushal, Clever, Rene, Ramirez, Jaysa, Lucas, Gale, Gratch, Jonathan.  2021.  Towards Emotion-Aware Agents For Negotiation Dialogues. 2021 9th International Conference on Affective Computing and Intelligent Interaction (ACII). :1–8.
Negotiation is a complex social interaction that encapsulates emotional encounters in human decision-making. Virtual agents that can negotiate with humans are useful in pedagogy and conversational AI. To advance the development of such agents, we explore the prediction of two important subjective goals in a negotiation – outcome satisfaction and partner perception. Specifically, we analyze the extent to which emotion attributes extracted from the negotiation help in the prediction, above and beyond the individual difference variables. We focus on a recent dataset in chat-based negotiations, grounded in a realistic camping scenario. We study three degrees of emotion dimensions – emoticons, lexical, and contextual by leveraging affective lexicons and a state-of-the-art deep learning architecture. Our insights will be helpful in designing adaptive negotiation agents that interact through realistic communication interfaces.
Wadekar, Isha.  2021.  Artificial Conversational Agent using Robust Adversarial Reinforcement Learning. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1–7.
Reinforcement learning (R.L.) is an effective and practical means for resolving problems where the broker possesses no information or knowledge about the environment. The agent acquires knowledge that is conditioned on two components: trial-and-error and rewards. An R.L. agent determines an effective approach by interacting directly with the setting and acquiring information regarding the circumstances. However, many modern R.L.-based strategies neglect to theorise considering there is an enormous rift within the simulation and the physical world due to which policy-learning tactics displease that stretches from simulation to physical world Even if design learning is achieved in the physical world, the knowledge inadequacy leads to failed generalization policies from suiting to test circumstances. The intention of robust adversarial reinforcement learning(RARL) is where an agent is instructed to perform in the presence of a destabilizing opponent(adversary agent) that connects impedance to the system. The combined trained adversary is reinforced so that the actual agent i.e. the protagonist is equipped rigorously.
Goel, Raman, Vashisht, Sachin, Dhanda, Armaan, Susan, Seba.  2021.  An Empathetic Conversational Agent with Attentional Mechanism. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1–4.
The number of people suffering from mental health issues like depression and anxiety have spiked enormously in recent times. Conversational agents like chatbots have emerged as an effective way for users to express their feelings and anxious thoughts and in turn obtain some empathetic reply that would relieve their anxiety. In our work, we construct two types of empathetic conversational agent models based on sequence-to-sequence modeling with and without attention mechanism. We implement the attention mechanism proposed by Bahdanau et al. for neural machine translation models. We train our model on the benchmark Facebook Empathetic Dialogue dataset and the BLEU scores are computed. Our empathetic conversational agent model incorporating attention mechanism generates better quality empathetic responses and is better in capturing human feelings and emotions in the conversation.
Xu, Aidong, Fei, Lingzhi, Wang, Qianru, Wen, Hong, Wu, Sihui, Wang, Peiyao, Zhang, Yunan, Jiang, Yixin.  2021.  Terminal Security Reinforcement Method based on Graph and Potential Function. 2021 International Conference on Intelligent Computing, Automation and Applications (ICAA). :307—313.
By taking advantages of graphs and potential functions, a security reinforcement method for edge computing terminals is proposed in this paper. A risk graph of the terminal security protection system is constructed, and importance of the security protection and risks of the terminals is evaluated according to the topological potential of the graph nodes, and the weak points of the terminal are located, and the corresponding reinforcement method is proposed. The simulation experiment results show that the proposed method can upgrade and strengthen the key security mechanism of the terminal, improve the performance of the terminal security protection system, and is beneficial to the security management of the edge computing system.
Li, Kai, Yang, Dawei, Bai, Liang, Wang, Tianjun.  2021.  Security Risk Assessment Method of Edge Computing Container Based on Dynamic Game. 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :195—199.
Compared with other virtualization technologies, container technology is widely used in edge computing because of its low cost, high reliability, high flexibility and fast portability. However, the use of container technology can alleviate the pressure of massive data, but also bring complex and diverse security problems. Reliable information security risk assessment method is the key to ensure the smooth application of container technology. According to the risk assessment theory, a security risk assessment method for edge computing containers based on dynamic game theory is proposed. Aiming at the complex container security attack and defense process, the container system's security model is constructed based on dynamic game theory. By combining the attack and defense matrix, the Nash equilibrium solution of the model is calculated, and the dynamic process of the mutual game between security defense and malicious attackers is analyzed. By solving the feedback Nash equilibrium solution of the model, the optimal strategies of the attackers are calculated. Finally, the simulation tool is used to solve the feedback Nash equilibrium solution of the two players in the proposed model, and the experimental environment verifies the usability of the risk assessment method.
Basumatary, Basundhara, Kumar, Chandan, Yadav, Dilip Kumar.  2021.  Security Risk Assessment of Information Systems in an Indeterminate Environment. 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence). :82—87.

The contemporary struggle that rests upon security risk assessment of Information Systems is its feasibility in the presence of an indeterminate environment when information is insufficient, conflicting, generic or ambiguous. But as pointed out by the security experts, most of the traditional approaches to risk assessment of information systems security are no longer practicable as they fail to deliver viable support on handling uncertainty. Therefore, to address this issue, we have anticipated a comprehensive risk assessment model based on Bayesian Belief Network (BBN) and Fuzzy Inference Scheme (FIS) process to function in an indeterminate environment. The proposed model is demonstrated and further comparisons are made on the test results to validate the reliability of the proposed model.

Casola, Valentina, Benedictis, Alessandra De, Mazzocca, Carlo, Montanari, Rebecca.  2021.  Toward Automated Threat Modeling of Edge Computing Systems. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :135—140.

Edge computing brings processing and storage capabilities closer to the data sources, to reduce network latency, save bandwidth, and preserve data locality. Despite the clear benefits, this paradigm brings unprecedented cyber risks due to the combination of the security issues and challenges typical of cloud and Internet of Things (IoT) worlds. Notwithstanding an increasing interest in edge security by academic and industrial communities, there is still no discernible industry consensus on edge computing security best practices, and activities like threat analysis and countermeasure selection are still not well established and are completely left to security experts.In order to cope with the need for a simplified yet effective threat modeling process, which is affordable in presence of limited security skills and economic resources, and viable in modern development approaches, in this paper, we propose an automated threat modeling and countermeasure selection strategy targeting edge computing systems. Our approach leverages a comprehensive system model able to describe the main involved architectural elements and the associated data flow, with a focus on the specific properties that may actually impact on the applicability of threats and of associated countermeasures.

Nguyen, Lan K., Nguyen, Duy H. N., Tran, Nghi H., Bosler, Clayton, Brunnenmeyer, David.  2021.  SATCOM Jamming Resiliency under Non-Uniform Probability of Attacks. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :85—90.
This paper presents a new framework for SATCOM jamming resiliency in the presence of a smart adversary jammer that can prioritize specific channels to attack with a non-uniform probability of distribution. We first develop a model and a defense action strategy based on a Markov decision process (MDP). We propose a greedy algorithm for the MDP-based defense algorithm's policy to optimize the expected user's immediate and future discounted rewards. Next, we remove the assumption that the user has specific information about the attacker's pattern and model. We develop a Q-learning algorithm-a reinforcement learning (RL) approach-to optimize the user's policy. We show that the Q-learning method provides an attractive defense strategy solution without explicit knowledge of the jammer's strategy. Computer simulation results show that the MDP-based defense strategies are very efficient; they offer a significant data rate advantage over the simple random hopping approach. Also, the proposed Q-learning performance can achieve close to the MDP approach without explicit knowledge of the jammer's strategy or attacking model.
2022-08-12
Hakim, Mohammad Sadegh Seyyed, Karegar, Hossein Kazemi.  2021.  Detection of False Data Injection Attacks Using Cross Wavelet Transform and Machine Learning. 2021 11th Smart Grid Conference (SGC). :1—5.
Power grids are the most extensive man-made systems that are difficult to control and monitor. With the development of conventional power grids and moving toward smart grids, power systems have undergone vast changes since they use the Internet to transmit information and control commands to different parts of the power system. Due to the use of the Internet as a basic infrastructure for smart grids, attackers can sabotage the communication networks and alter the measurements. Due to the complexity of the smart grids, it is difficult for the network operator to detect such cyber-attacks. The attackers can implement the attack in a manner that conventional Bad Data detection (BDD) systems cannot detect since it may not violate the physical laws of the power system. This paper uses the cross wavelet transform (XWT) to detect stealth false data injections attacks (FDIAs) against state estimation (SE) systems. XWT can capture the coherency between measurements of adjacent buses and represent it in time and frequency space. Then, we train a machine learning classification algorithm to distinguish attacked measurements from normal measurements by applying a feature extraction technique.
Laird, James.  2021.  A Compositional Cost Model for the λ-calculus. 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). :1–13.
We describe a (time) cost model for the (call-by-value) λ-calculus based on a natural presentation of its game semantics: the cost of computing a finite approximant to the denotation of a term (its evaluation tree) is the size of its smallest derivation in the semantics. This measure has an optimality property enabling compositional reasoning about cost bounds: for any term A, context C[\_] and approximants a and c to the trees of A and C[A], the cost of computing c from C[A] is no more than the cost of computing a from A and c from C[a].Although the natural semantics on which it is based is nondeterministic, our cost model is reasonable: we describe a deterministic algorithm for recognizing evaluation tree approximants which satisfies it (up to a constant factor overhead) on a Random Access Machine. This requires an implementation of the λv-calculus on the RAM which is completely lazy: compositionality of costs entails that work done to evaluate any part of a term cannot be duplicated. This is achieved by a novel implementation of graph reduction for nameless explicit substitutions, to which we compile the λv-calculus via a series of linear cost reductions.
Basin, David, Lochbihler, Andreas, Maurer, Ueli, Sefidgar, S. Reza.  2021.  Abstract Modeling of System Communication in Constructive Cryptography using CryptHOL. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1–16.
Proofs in simulation-based frameworks have the greatest rigor when they are machine checked. But the level of details in these proofs surpasses what the formal-methods community can handle with existing tools. Existing formal results consider streamlined versions of simulation-based frameworks to cope with this complexity. Hence, a central question is how to abstract details from composability results and enable their formal verification.In this paper, we focus on the modeling of system communication in composable security statements. Existing formal models consider fixed communication patterns to reduce the complexity of their proofs. However, as we will show, this can affect the reusability of security statements. We propose an abstract approach to modeling system communication in Constructive Cryptography that avoids this problem. Our approach is suitable for mechanized verification and we use CryptHOL, a framework for developing mechanized cryptography proofs, to implement it in the Isabelle/HOL theorem prover. As a case study, we formalize the construction of a secure channel using Diffie-Hellman key exchange and a one-time-pad.
Telghamti, Samira, Derdouri, Lakhdhar.  2021.  Towards a Trust-based Model for Access Control for Graph-Oriented Databases. 2021 International Conference on Theoretical and Applicative Aspects of Computer Science (ICTAACS). :1—3.
Privacy and data security are critical aspects in databases, mainly when the latter are publically accessed such in social networks. Furthermore, for advanced databases, such as NoSQL ones, security models and security meta-data must be integrated to the business specification and data. In the literature, the proposed models for NoSQL databases can be considered as static, in the sense where the privileges for a given user are predefined and remain unchanged during job sessions. In this paper, we propose a novel model for NoSQL database access control that we aim that it will be dynamic. To be able to design such model, we have considered the Trust concept to compute the reputation degree for a given user that plays a given role.
Yang, Liu, Zhang, Ping, Tao, Yang.  2021.  Malicious Nodes Detection Scheme Based On Dynamic Trust Clouds for Wireless Sensor Networks. 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT). :57—61.
The randomness, ambiguity and some other uncertainties of trust relationships in Wireless Sensor Networks (WSNs) make existing trust management methods often unsatisfactory in terms of accuracy. This paper proposes a trust evaluation method based on cloud model for malicious node detection. The conversion between qualitative and quantitative sensor node trust degree is achieved. Firstly, nodes cooperate with each other to establish a standard cloud template for malicious nodes and a standard cloud template for normal nodes, so that malicious nodes have a qualitative description to be either malicious or normal. Secondly, the trust cloud template obtained during the interactions is matched against the previous standard templates to achieve the detection of malicious nodes. Simulation results demonstrate that the proposed method greatly improves the accuracy of malicious nodes detection.
Zhu, Jinhui, Chen, Liangdong, Liu, Xiantong, Zhao, Lincong, Shen, Peipei, Chen, Jinghan.  2021.  Trusted Model Based on Multi-dimensional Attributes in Edge Computing. 2021 2nd Asia Symposium on Signal Processing (ASSP). :95—100.
As a supplement to the cloud computing model, the edge computing model can use edge servers and edge devices to coordinate information processing on the edge of the network to help Internet of Thing (IoT) data storage, transmission, and computing tasks. In view of the complex and changeable situation of edge computing IoT scenarios, this paper proposes a multi-dimensional trust evaluation factor selection scheme. Improve the traditional trusted modeling method based on direct/indirect trust, introduce multi-dimensional trusted decision attributes and rely on the collaboration of edge servers and edge device nodes to infer and quantify the trusted relationship between nodes, and combine the information entropy theory to smoothly weight the calculation results of multi-dimensional decision attributes. Improving the current situation where the traditional trusted assessment scheme's dynamic adaptability to the environment and the lack of reliability of trusted assessment are relatively lacking. Simulation experiments show that the edge computing IoT multi-dimensional trust evaluation model proposed in this paper has better performance than the trusted model in related literature.
2022-08-10
Mallik, Abhishek, Khetarpal, Anavi.  2021.  Turing Machine based Syllable Splitter. 2021 Fourth International Conference on Computational Intelligence and Communication Technologies (CCICT). :87—90.
Nowadays, children, teens, and almost everyone around us tend to receive abundant and frequent advice regarding the usefulness of syllabification. Not only does it improve pronunciation, but it also makes it easier for us to read unfamiliar words in chunks of syllables rather than reading them all at once. Within this paper, we have designed, implemented, and presented a Turing machine-based syllable splitter. A Turing machine forms the theoretical basis for all modern computers and can be used to solve universal problems. On the other hand, a syllable splitter is used to hyphenate words into their corresponding syllables. We have proposed our work by illustrating the various states of the Turing machine, along with the rules it abides by, its machine specifications, and transition function. In addition to this, we have implemented a Graphical User Interface to stimulate our Turing machine to analyze our results better.
Usman, Ali, Rafiq, Muhammad, Saeed, Muhammad, Nauman, Ali, Almqvist, Andreas, Liwicki, Marcus.  2021.  Machine Learning Computational Fluid Dynamics. 2021 Swedish Artificial Intelligence Society Workshop (SAIS). :1—4.
Numerical simulation of fluid flow is a significant research concern during the design process of a machine component that experiences fluid-structure interaction (FSI). State-of-the-art in traditional computational fluid dynamics (CFD) has made CFD reach a relative perfection level during the last couple of decades. However, the accuracy of CFD is highly dependent on mesh size; therefore, the computational cost depends on resolving the minor feature. The computational complexity grows even further when there are multiple physics and scales involved making the approach time-consuming. In contrast, machine learning (ML) has shown a highly encouraging capacity to forecast solutions for partial differential equations. A trained neural network has offered to make accurate approximations instantaneously compared with conventional simulation procedures. This study presents transient fluid flow prediction past a fully immersed body as an integral part of the ML-CFD project. MLCFD is a hybrid approach that involves initialising the CFD simulation domain with a solution forecasted by an ML model to achieve fast convergence in traditional CDF. Initial results are highly encouraging, and the entire time-based series of fluid patterns past the immersed structure is forecasted using a deep learning algorithm. Prepared results show a strong agreement compared with fluid flow simulation performed utilising CFD.
Simsek, Ozlem Imik, Alagoz, Baris Baykant.  2021.  A Computational Intelligent Analysis Scheme for Optimal Engine Behavior by Using Artificial Neural Network Learning Models and Harris Hawk Optimization. 2021 International Conference on Information Technology (ICIT). :361—365.
Application of computational intelligence methods in data analysis and optimization problems can allow feasible and optimal solutions of complicated engineering problems. This study demonstrates an intelligent analysis scheme for determination of optimal operating condition of an internal combustion engine. For this purpose, an artificial neural network learning model is used to represent engine behavior based on engine data, and a metaheuristic optimization method is implemented to figure out optimal operating states of the engine according to the neural network learning model. This data analysis scheme is used for adjustment of optimal engine speed and fuel rate parameters to provide a maximum torque under Nitrous oxide emission constraint. Harris hawks optimization method is implemented to solve the proposed optimization problem. The solution of this optimization problem addresses eco-friendly enhancement of vehicle performance. Results indicate that this computational intelligent analysis scheme can find optimal operating regimes of an engine.
Prabhu, S., Anita E.A., Mary.  2020.  Trust based secure routing mechanisms for wireless sensor networks: A survey. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1003—1009.
Wireless Sensor Network (WSN)is a predominant technology that is widely used in many applications such as industrial sectors, defense, environment, habitat monitoring, medical fields etc., These applications are habitually delegated for observing sensitive and confidential raw data such as adversary position, movement in the battle field, location of personnel in a building, changes in environmental condition, regular medical updates from patient side to doctors or hospital control rooms etc., Security becomes inevitable in WSN and providing security is being truly intricate because of in-built nature of WSN which is assailable to attacks easily. Node involved in WSN need to route the data to the neighboring nodes wherein any attack in the node could lead to fiasco. Of late trust mechanisms have been considered to be an ideal solution that can mitigate security problems in WSN. This paper aims to investigate various existing trust-based Secure Routing (SR) protocols and mechanisms available for the wireless sensing connection. The concept of the present trust mechanism is also analyzed with respect to methodology, trust metric, pros, cons, and complexity involved. Finally, the security resiliency of various trust models against the attacks is also analyzed.
2022-08-03
Le, Van Thanh, El Ioini, Nabil, Pahl, Claus, Barzegar, Hamid R., Ardagna, Claudio.  2021.  A Distributed Trust Layer for Edge Infrastructure. 2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC). :1—8.
Recently, Mobile Edge Cloud computing (MEC) has attracted attention both from academia and industry. The idea of moving a part of cloud resources closer to users and data sources can bring many advantages in terms of speed, data traffic, security and context-aware services. The MEC infrastructure does not only host and serves applications next to the end-users, but services can be dynamically migrated and reallocated as mobile users move in order to guarantee latency and performance constraints. This specific requirement calls for the involvement and collaboration of multiple MEC providers, which raises a major issue related to trustworthiness. Two main challenges need to be addressed: i) trustworthiness needs to be handled in a manner that does not affect latency or performance, ii) trustworthiness is considered in different dimensions - not only security metrics but also performance and quality metrics in general. In this paper, we propose a trust layer for public MEC infrastructure that handles establishing and updating trust relations among all MEC entities, making the interaction withing a MEC network transparent. First, we define trust attributes affecting the trusted quality of the entire infrastructure and then a methodology with a computation model that combines these trust attribute values. Our experiments showed that the trust model allows us to reduce latency by removing the burden from a single MEC node, while at the same time increase the network trustworthiness.
Laputenko, Andrey.  2021.  Assessing Trustworthiness of IoT Applications Using Logic Circuits. 2021 IEEE East-West Design & Test Symposium (EWDTS). :1—4.
The paper describes a methodology for assessing non-functional requirements, such as trust characteristics for applications running on computationally constrained devices in the Internet of Things. The methodology is demonstrated through an example of a microcontroller-based temperature monitoring system. The concepts of trust and trustworthiness for software and devices of the Internet of Things are complex characteristics for describing the correct and secure operation of such systems and include aspects of operational and information security, reliability, resilience and privacy. Machine learning models, which are increasingly often used for such tasks in recent years, are resource-consuming software implementations. The paper proposes to use a logic circuit model to implement the above algorithms as an additional module for computationally constrained devices for checking the trustworthiness of applications running on them. Such a module could be implemented as a hardware, for example, as an FPGA in order to achieve more effectiveness.
2022-07-15
Luo, Yun, Chen, Yuling, Li, Tao, Wang, Yilei, Yang, Yixian.  2021.  Using information entropy to analyze secure multi-party computation protocol. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :312—318.

Secure multi-party computation(SMPC) is an important research field in cryptography, secure multi-party computation has a wide range of applications in practice. Accordingly, information security issues have arisen. Aiming at security issues in Secure multi-party computation, we consider that semi-honest participants have malicious operations such as collusion in the process of information interaction, gaining an information advantage over honest parties through collusion which leads to deviations in the security of the protocol. To solve this problem, we combine information entropy to propose an n-round information exchange protocol, in which each participant broadcasts a relevant information value in each round without revealing additional information. Through the change of the uncertainty of the correct result value in each round of interactive information, each participant cannot determine the correct result value before the end of the protocol. Security analysis shows that our protocol guarantees the security of the output obtained by the participants after the completion of the protocol.

Zhang, Dayin, Chen, Xiaojun, Shi, Jinqiao, Wang, Dakui, Zeng, Shuai.  2021.  A Differential Privacy Collaborative Deep Learning Algorithm in Pervasive Edge Computing Environment. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :347—354.

With the development of 5G technology and intelligent terminals, the future direction of the Industrial Internet of Things (IIoT) evolution is Pervasive Edge Computing (PEC). In the pervasive edge computing environment, intelligent terminals can perform calculations and data processing. By migrating part of the original cloud computing model's calculations to intelligent terminals, the intelligent terminal can complete model training without uploading local data to a remote server. Pervasive edge computing solves the problem of data islands and is also successfully applied in scenarios such as vehicle interconnection and video surveillance. However, pervasive edge computing is facing great security problems. Suppose the remote server is honest but curious. In that case, it can still design algorithms for the intelligent terminal to execute and infer sensitive content such as their identity data and private pictures through the information returned by the intelligent terminal. In this paper, we research the problem of honest but curious remote servers infringing intelligent terminal privacy and propose a differential privacy collaborative deep learning algorithm in the pervasive edge computing environment. We use a Gaussian mechanism that meets the differential privacy guarantee to add noise on the first layer of the neural network to protect the data of the intelligent terminal and use analytical moments accountant technology to track the cumulative privacy loss. Experiments show that with the Gaussian mechanism, the training data of intelligent terminals can be protected reduction inaccuracy.

Aggarwal, Pranjal, Kumar, Akash, Michael, Kshitiz, Nemade, Jagrut, Sharma, Shubham, C, Pavan Kumar.  2021.  Random Decision Forest approach for Mitigating SQL Injection Attacks. 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). :1—5.
Structured Query Language (SQL) is extensively used for storing, manipulating and retrieving information in the relational database management system. Using SQL statements, attackers will try to gain unauthorized access to databases and launch attacks to modify/retrieve the stored data, such attacks are called as SQL injection attacks. Such SQL Injection (SQLi) attacks tops the list of web application security risks of all the times. Identifying and mitigating the potential SQL attack statements before their execution can prevent SQLi attacks. Various techniques are proposed in the literature to mitigate SQLi attacks. In this paper, a random decision forest approach is introduced to mitigate SQLi attacks. From the experimental results, we can infer that the proposed approach achieves a precision of 97% and an accuracy of 95%.
Pengwei, Ma, Kai, Wei, Chunyu, Jiang, Junyi, Li, Jiafeng, Tian, Siyuan, Liu, Minjing, Zhong.  2021.  Research on Evaluation System of Relational Cloud Database. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1369—1373.
With the continuous emergence of cloud computing technology, cloud infrastructure software will become the mainstream application model in the future. Among the databases, relational databases occupy the largest market share. Therefore, the relational cloud database will be the main product of the combination of database technology and cloud computing technology, and will become an important branch of the database industry. This article explores the establishment of an evaluation system framework for relational databases, helping enterprises to select relational cloud database products according to a clear goal and path. This article can help enterprises complete the landing of relational cloud database projects.
Yuan, Rui, Wang, Xinna, Xu, Jiangmin, Meng, Shunmei.  2021.  A Differential-Privacy-based hybrid collaborative recommendation method with factorization and regression. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :389—396.
Recommender systems have been proved to be effective techniques to provide users with better experiences. However, when a recommender knows the user's preference characteristics or gets their sensitive information, then a series of privacy concerns are raised. A amount of solutions in the literature have been proposed to enhance privacy protection degree of recommender systems. Although the existing solutions have enhanced the protection, they led to a decrease in recommendation accuracy simultaneously. In this paper, we propose a security-aware hybrid recommendation method by combining the factorization and regression techniques. Specifically, the differential privacy mechanism is integrated into data pre-processing for data encryption. Firstly data are perturbed to satisfy differential privacy and transported to the recommender. Then the recommender calculates the aggregated data. However, applying differential privacy raises utility issues of low recommendation accuracy, meanwhile the use of a single model may cause overfitting. In order to tackle this challenge, we adopt a fusion prediction model by combining linear regression (LR) and matrix factorization (MF) for collaborative recommendation. With the MovieLens dataset, we evaluate the recommendation accuracy and regression of our recommender system and demonstrate that our system performs better than the existing recommender system under privacy requirement.