Visible to the public Biblio

Filters: Keyword is Advanced Persistent Threat (APT)  [Clear All Filters]
2021-12-20
Park, Kyuchan, Ahn, Bohyun, Kim, Jinsan, Won, Dongjun, Noh, Youngtae, Choi, JinChun, Kim, Taesic.  2021.  An Advanced Persistent Threat (APT)-Style Cyberattack Testbed for Distributed Energy Resources (DER). 2021 IEEE Design Methodologies Conference (DMC). :1–5.
Advanced Persistent Threat (APT) is a professional stealthy threat actor who uses continuous and sophisticated attack techniques which have not been well mitigated by existing defense strategies. This paper proposes an APT-style cyber-attack tested for distributed energy resources (DER) in cyber-physical environments. The proposed security testbed consists of: 1) a real-time DER simulator; 2) a real-time cyber system using real network systems and a server; and 3) penetration testing tools generating APT-style attacks as cyber events. Moreover, this paper provides a cyber kill chain model for a DER system based on a latest MITRE’s cyber kill chain model to model possible attack stages. Several real cyber-attacks are created and their impacts in a DER system are provided to validate the feasibility of the proposed security testbed for DER systems.
2020-08-07
Hasan, Kamrul, Shetty, Sachin, Ullah, Sharif.  2019.  Artificial Intelligence Empowered Cyber Threat Detection and Protection for Power Utilities. 2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC). :354—359.
Cyber threats have increased extensively during the last decade, especially in smart grids. Cybercriminals have become more sophisticated. Current security controls are not enough to defend networks from the number of highly skilled cybercriminals. Cybercriminals have learned how to evade the most sophisticated tools, such as Intrusion Detection and Prevention Systems (IDPS), and Advanced Persistent Threat (APT) is almost invisible to current tools. Fortunately, the application of Artificial Intelligence (AI) may increase the detection rate of IDPS systems, and Machine Learning (ML) techniques can mine data to detect different attack stages of APT. However, the implementation of AI may bring other risks, and cybersecurity experts need to find a balance between risk and benefits.
2020-03-23
Kim, MinJu, Dey, Sangeeta, Lee, Seok-Won.  2019.  Ontology-Driven Security Requirements Recommendation for APT Attack. 2019 IEEE 27th International Requirements Engineering Conference Workshops (REW). :150–156.
Advanced Persistent Threat (APT) is one of the cyber threats that continuously attack specific targets exfiltrate information or destroy the system [1]. Because the attackers use various tools and methods according to the target, it is difficult to describe APT attack in a single pattern. Therefore, APT attacks are difficult to defend against with general countermeasures. In these days, systems consist of various components and related stakeholders, which makes it difficult to consider all the security concerns. In this paper, we propose an ontology knowledge base and its design process to recommend security requirements based on APT attack cases and system domain knowledge. The proposed knowledge base is divided into three parts; APT ontology, general security knowledge ontology, and domain-specific knowledge ontology. Each ontology can help to understand the security concerns in their knowledge. While integrating three ontologies into the problem domain ontology, the appropriate security requirements can be derived with the security requirements recommendation process. The proposed knowledge base and process can help to derive the security requirements while considering both real attacks and systems.
2019-01-21
Khosravi-Farmad, M., Ramaki, A. A., Bafghi, A. G..  2018.  Moving Target Defense Against Advanced Persistent Threats for Cybersecurity Enhancement. 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE). :280–285.
One of the main security concerns of enterprise-level organizations which provide network-based services is combating with complex cybersecurity attacks like advanced persistent threats (APTs). The main features of these attacks are being multilevel, multi-step, long-term and persistent. Also they use an intrusion kill chain (IKC) model to proceed the attack steps and reach their goals on targets. Traditional security solutions like firewalls and intrusion detection and prevention systems (IDPSs) are not able to prevent APT attack strategies and block them. Recently, deception techniques are proposed to defend network assets against malicious activities during IKC progression. One of the most promising approaches against APT attacks is Moving Target Defense (MTD). MTD techniques can be applied to attack steps of any abstraction levels in a networked infrastructure (application, host, and network) dynamically for disruption of successful execution of any on the fly IKCs. In this paper, after presentation and discussion on common introduced IKCs, one of them is selected and is used for further analysis. Also, after proposing a new and comprehensive taxonomy of MTD techniques in different levels, a mapping analysis is conducted between IKC models and existing MTD techniques. Finally, the effect of MTD is evaluated during a case study (specifically IP Randomization). The experimental results show that the MTD techniques provide better means to defend against IKC-based intrusion activities.
2017-02-14
F. Quader, V. Janeja, J. Stauffer.  2015.  "Persistent threat pattern discovery". 2015 IEEE International Conference on Intelligence and Security Informatics (ISI). :179-181.

Advanced Persistent Threat (APT) is a complex (Advanced) cyber-attack (Threat) against specific targets over long periods of time (Persistent) carried out by nation states or terrorist groups with highly sophisticated levels of expertise to establish entries into organizations, which are critical to a country's socio-economic status. The key identifier in such persistent threats is that patterns are long term, could be high priority, and occur consistently over a period of time. This paper focuses on identifying persistent threat patterns in network data, particularly data collected from Intrusion Detection Systems. We utilize Association Rule Mining (ARM) to detect persistent threat patterns on network data. We identify potential persistent threat patterns, which are frequent but at the same time unusual as compared with the other frequent patterns.

K. F. Hong, C. C. Chen, Y. T. Chiu, K. S. Chou.  2015.  "Ctracer: Uncover C amp;amp;C in Advanced Persistent Threats Based on Scalable Framework for Enterprise Log Data". 2015 IEEE International Congress on Big Data. :551-558.

Advanced Persistent Threat (APT), unlike traditional hacking attempts, carries out specific attacks on a specific target to illegally collect information and data from it. These targeted attacks use special-crafted malware and infrequent activity to avoid detection, so that hackers can retain control over target systems unnoticed for long periods of time. In order to detect these stealthy activities, a large-volume of traffic data generated in a period of time has to be analyzed. We proposed a scalable solution, Ctracer to detect stealthy command and control channel in a large-volume of traffic data. APT uses multiple command and control (C&C) channel and change them frequently to avoid detection, but there are common signatures in those C&C sessions. By identifying common network signature, Ctracer is able to group the C&C sessions. Therefore, we can detect an APT and all the C&C session used in an APT attack. The Ctracer is evaluated in a large enterprise for four months, twenty C&C servers, three APT attacks are reported. After investigated by the enterprise's Security Operations Center (SOC), the forensic report shows that there is specific enterprise targeted APT cases and not ever discovered for over 120 days.

2015-05-06
Butt, M.I.A..  2014.  BIOS integrity an advanced persistent threat. Information Assurance and Cyber Security (CIACS), 2014 Conference on. :47-50.

Basic Input Output System (BIOS) is the most important component of a computer system by virtue of its role i.e., it holds the code which is executed at the time of startup. It is considered as the trusted computing base, and its integrity is extremely important for smooth functioning of the system. On the contrary, BIOS of new computer systems (servers, laptops, desktops, network devices, and other embedded systems) can be easily upgraded using a flash or capsule mechanism which can add new vulnerabilities either through malicious code, or by accidental incidents, and deliberate attack. The recent attack on Iranian Nuclear Power Plant (Stuxnet) [1:2] is an example of advanced persistent attack. This attack vector adds a new dimension into the information security (IS) spectrum, which needs to be guarded by implementing a holistic approach employed at enterprise level. Malicious BIOS upgrades can also cause denial of service, stealing of information or addition of new backdoors which can be exploited by attackers for causing business loss, passive eaves dropping or total destruction of system without knowledge of user. To address this challenge a capability for verification of BIOS integrity needs to be developed and due diligence must be observed for proactive resolution of the issue. This paper explains the BIOS Integrity threats and presents a prevention strategy for effective and proactive resolution.