Visible to the public Biblio

Found 169 results

Filters: Keyword is Electronic mail  [Clear All Filters]
2017-12-12
Wei, B., Liao, G., Li, W., Gong, Z..  2017.  A Practical One-Time File Encryption Protocol for IoT Devices. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). 2:114–119.

Security and privacy issues of the Internet of Things (IoT in short, hereafter) attracts the hot topic of researches through these years. As the relationship between user and server become more complicated than before, the existing security solutions might not provide exhaustive securities in IoT environment and novel solutions become new research challenges, e.g., the solutions based on symmetric cryptosystems are unsuited to handle with the occasion that decryption is only allowed in specific time range. In this paper, a new scalable one-time file encryption scheme combines reliable cryptographic techniques, which is named OTFEP, is proposed to satisfy specialized security requirements. One of OTFEP's key features is that it offers a mechanism to protect files in the database from arbitrary visiting from system manager or third-party auditors. OTFEP uses two different approaches to deal with relatively small file and stream file. Moreover, OTFEP supports good node scalability and secure key distribution mechanism. Based on its practical security and performance, OTFEP can be considered in specific IoT devices where one-time file encryption is necessary.

Bhattacharjee, S. Das, Yuan, J., Jiaqi, Z., Tan, Y. P..  2017.  Context-aware graph-based analysis for detecting anomalous activities. 2017 IEEE International Conference on Multimedia and Expo (ICME). :1021–1026.

This paper proposes a context-aware, graph-based approach for identifying anomalous user activities via user profile analysis, which obtains a group of users maximally similar among themselves as well as to the query during test time. The main challenges for the anomaly detection task are: (1) rare occurrences of anomalies making it difficult for exhaustive identification with reasonable false-alarm rate, and (2) continuously evolving new context-dependent anomaly types making it difficult to synthesize the activities apriori. Our proposed query-adaptive graph-based optimization approach, solvable using maximum flow algorithm, is designed to fully utilize both mutual similarities among the user models and their respective similarities with the query to shortlist the user profiles for a more reliable aggregated detection. Each user activity is represented using inputs from several multi-modal resources, which helps to localize anomalies from time-dependent data efficiently. Experiments on public datasets of insider threats and gesture recognition show impressive results.

Legg, P. A., Buckley, O., Goldsmith, M., Creese, S..  2017.  Automated Insider Threat Detection System Using User and Role-Based Profile Assessment. IEEE Systems Journal. 11:503–512.

Organizations are experiencing an ever-growing concern of how to identify and defend against insider threats. Those who have authorized access to sensitive organizational data are placed in a position of power that could well be abused and could cause significant damage to an organization. This could range from financial theft and intellectual property theft to the destruction of property and business reputation. Traditional intrusion detection systems are neither designed nor capable of identifying those who act maliciously within an organization. In this paper, we describe an automated system that is capable of detecting insider threats within an organization. We define a tree-structure profiling approach that incorporates the details of activities conducted by each user and each job role and then use this to obtain a consistent representation of features that provide a rich description of the user's behavior. Deviation can be assessed based on the amount of variance that each user exhibits across multiple attributes, compared against their peers. We have performed experimentation using ten synthetic data-driven scenarios and found that the system can identify anomalous behavior that may be indicative of a potential threat. We also show how our detection system can be combined with visual analytics tools to support further investigation by an analyst.

Gamachchi, A., Boztas, S..  2017.  Insider Threat Detection Through Attributed Graph Clustering. 2017 IEEE Trustcom/BigDataSE/ICESS. :112–119.

While most organizations continue to invest in traditional network defences, a formidable security challenge has been brewing within their own boundaries. Malicious insiders with privileged access in the guise of a trusted source have carried out many attacks causing far reaching damage to financial stability, national security and brand reputation for both public and private sector organizations. Growing exposure and impact of the whistleblower community and concerns about job security with changing organizational dynamics has further aggravated this situation. The unpredictability of malicious attackers, as well as the complexity of malicious actions, necessitates the careful analysis of network, system and user parameters correlated with insider threat problem. Thus it creates a high dimensional, heterogeneous data analysis problem in isolating suspicious users. This research work proposes an insider threat detection framework, which utilizes the attributed graph clustering techniques and outlier ranking mechanism for enterprise users. Empirical results also confirm the effectiveness of the method by achieving the best area under curve value of 0.7648 for the receiver operating characteristic curve.

Lin, L., Zhong, S., Jia, C., Chen, K..  2017.  Insider Threat Detection Based on Deep Belief Network Feature Representation. 2017 International Conference on Green Informatics (ICGI). :54–59.

Insider threat is a significant security risk for information system, and detection of insider threat is a major concern for information system organizers. Recently existing work mainly focused on the single pattern analysis of user single-domain behavior, which were not suitable for user behavior pattern analysis in multi-domain scenarios. However, the fusion of multi-domain irrelevant features may hide the existence of anomalies. Previous feature learning methods have relatively a large proportion of information loss in feature extraction. Therefore, this paper proposes a hybrid model based on the deep belief network (DBN) to detect insider threat. First, an unsupervised DBN is used to extract hidden features from the multi-domain feature extracted by the audit logs. Secondly, a One-Class SVM (OCSVM) is trained from the features learned by the DBN. The experimental results on the CERT dataset demonstrate that the DBN can be used to identify the insider threat events and it provides a new idea to feature processing for the insider threat detection.

2017-12-04
Farinholt, B., Rezaeirad, M., Pearce, P., Dharmdasani, H., Yin, H., Blond, S. L., McCoy, D., Levchenko, K..  2017.  To Catch a Ratter: Monitoring the Behavior of Amateur DarkComet RAT Operators in the Wild. 2017 IEEE Symposium on Security and Privacy (SP). :770–787.

Remote Access Trojans (RATs) give remote attackers interactive control over a compromised machine. Unlike large-scale malware such as botnets, a RAT is controlled individually by a human operator interacting with the compromised machine remotely. The versatility of RATs makes them attractive to actors of all levels of sophistication: they've been used for espionage, information theft, voyeurism and extortion. Despite their increasing use, there are still major gaps in our understanding of RATs and their operators, including motives, intentions, procedures, and weak points where defenses might be most effective. In this work we study the use of DarkComet, a popular commercial RAT. We collected 19,109 samples of DarkComet malware found in the wild, and in the course of two, several-week-long experiments, ran as many samples as possible in our honeypot environment. By monitoring a sample's behavior in our system, we are able to reconstruct the sequence of operator actions, giving us a unique view into operator behavior. We report on the results of 2,747 interactive sessions captured in the course of the experiment. During these sessions operators frequently attempted to interact with victims via remote desktop, to capture video, audio, and keystrokes, and to exfiltrate files and credentials. To our knowledge, we are the first large-scale systematic study of RAT use.

Zhuang, D., Chang, J. M..  2017.  PeerHunter: Detecting peer-to-peer botnets through community behavior analysis. 2017 IEEE Conference on Dependable and Secure Computing. :493–500.

Peer-to-peer (P2P) botnets have become one of the major threats in network security for serving as the infrastructure that responsible for various of cyber-crimes. Though a few existing work claimed to detect traditional botnets effectively, the problem of detecting P2P botnets involves more challenges. In this paper, we present PeerHunter, a community behavior analysis based method, which is capable of detecting botnets that communicate via a P2P structure. PeerHunter starts from a P2P hosts detection component. Then, it uses mutual contacts as the main feature to cluster bots into communities. Finally, it uses community behavior analysis to detect potential botnet communities and further identify bot candidates. Through extensive experiments with real and simulated network traces, PeerHunter can achieve very high detection rate and low false positives.

2017-11-27
Fournaris, A. P., Papachristodoulou, L., Batina, L., Sklavos, N..  2016.  Residue Number System as a side channel and fault injection attack countermeasure in elliptic curve cryptography. 2016 International Conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS). :1–4.

Implementation attacks and more specifically Power Analysis (PA) (the dominant type of side channel attack) and fault injection (FA) attacks constitute a pragmatic hazard for scalar multiplication, the main operation behind Elliptic Curve Cryptography. There exists a wide variety of countermeasures attempting to thwart such attacks that, however, few of them explore the potential of alternative number systems like the Residue Number System (RNS). In this paper, we explore the potential of RNS as an PA-FA countermeasure and propose an PA-FA resistant scalar multiplication algorithm and provide an extensive security analysis against the most effective PA-FA techniques. We argue through a security analysis that combining traditional PA-FA countermeasures with lightweight RNS countermeasures can provide strong PA-FA resistance.

2017-11-20
Messaoud, B. I. D., Guennoun, K., Wahbi, M., Sadik, M..  2016.  Advanced Persistent Threat: New analysis driven by life cycle phases and their challenges. 2016 International Conference on Advanced Communication Systems and Information Security (ACOSIS). :1–6.

In a world where highly skilled actors involved in cyber-attacks are constantly increasing and where the associated underground market continues to expand, organizations should adapt their defence strategy and improve consequently their security incident management. In this paper, we give an overview of Advanced Persistent Threats (APT) attacks life cycle as defined by security experts. We introduce our own compiled life cycle model guided by attackers objectives instead of their actions. Challenges and opportunities related to the specific camouflage actions performed at the end of each APT phase of the model are highlighted. We also give an overview of new APT protection technologies and discuss their effectiveness at each one of life cycle phases.

Bouhoula, A., Yazidi, A..  2016.  A security Policy Query Engine for fully automated resolution of anomalies in firewall configurations. 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA). :76–80.

Legacy work on correcting firewall anomalies operate with the premise of creating totally disjunctive rules. Unfortunately, such solutions are impractical from implementation point of view as they lead to an explosion of the number of firewall rules. In a related previous work, we proposed a new approach for performing assisted corrective actions, which in contrast to the-state-of-the-art family of radically disjunctive approaches, does not lead to a prohibitive increase of the configuration size. In this sense, we allow relaxation in the correction process by clearly distinguishing between constructive anomalies that can be tolerated and destructive anomalies that should be systematically fixed. However, a main disadvantage of the latter approach was its dependency on the guided input from the administrator which controversially introduces a new risk for human errors. In order to circumvent the latter disadvantage, we present in this paper a Firewall Policy Query Engine (FPQE) that renders the whole process of anomaly resolution a fully automated one and which does not require any human intervention. In this sense, instead of prompting the administrator for inserting the proper order corrective actions, FPQE executes those queries against a high level firewall policy. We have implemented the FPQE and the first results of integrating it with our legacy anomaly resolver are promising.

2017-11-03
Harrigan, M., Fretter, C..  2016.  The Unreasonable Effectiveness of Address Clustering. 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). :368–373.

Address clustering tries to construct the one-to-many mapping from entities to addresses in the Bitcoin system. Simple heuristics based on the micro-structure of transactions have proved very effective in practice. In this paper we describe the primary reasons behind this effectiveness: address reuse, avoidable merging, super-clusters with high centrality,, the incremental growth of address clusters. We quantify their impact during Bitcoin's first seven years of existence.

Liao, K., Zhao, Z., Doupe, A., Ahn, G. J..  2016.  Behind closed doors: measurement and analysis of CryptoLocker ransoms in Bitcoin. 2016 APWG Symposium on Electronic Crime Research (eCrime). :1–13.

Bitcoin, a decentralized cryptographic currency that has experienced proliferating popularity over the past few years, is the common denominator in a wide variety of cybercrime. We perform a measurement analysis of CryptoLocker, a family of ransomware that encrypts a victim's files until a ransom is paid, within the Bitcoin ecosystem from September 5, 2013 through January 31, 2014. Using information collected from online fora, such as reddit and BitcoinTalk, as an initial starting point, we generate a cluster of 968 Bitcoin addresses belonging to CryptoLocker. We provide a lower bound for CryptoLocker's economy in Bitcoin and identify 795 ransom payments totalling 1,128.40 BTC (\$310,472.38), but show that the proceeds could have been worth upwards of \$1.1 million at peak valuation. By analyzing ransom payment timestamps both longitudinally across CryptoLocker's operating period and transversely across times of day, we detect changes in distributions and form conjectures on CryptoLocker that corroborate information from previous efforts. Additionally, we construct a network topology to detail CryptoLocker's financial infrastructure and obtain auxiliary information on the CryptoLocker operation. Most notably, we find evidence that suggests connections to popular Bitcoin services, such as Bitcoin Fog and BTC-e, and subtle links to other cybercrimes surrounding Bitcoin, such as the Sheep Marketplace scam of 2013. We use our study to underscore the value of measurement analyses and threat intelligence in understanding the erratic cybercrime landscape.

Moore, C..  2016.  Detecting Ransomware with Honeypot Techniques. 2016 Cybersecurity and Cyberforensics Conference (CCC). :77–81.

Attacks of Ransomware are increasing, this form of malware bypasses many technical solutions by leveraging social engineering methods. This means established methods of perimeter defence need to be supplemented with additional systems. Honeypots are bogus computer resources deployed by network administrators to act as decoy computers and detect any illicit access. This study investigated whether a honeypot folder could be created and monitored for changes. The investigations determined a suitable method to detect changes to this area. This research investigated methods to implement a honeypot to detect ransomware activity, and selected two options, the File Screening service of the Microsoft File Server Resource Manager feature and EventSentry to manipulate the Windows Security logs. The research developed a staged response to attacks to the system along with thresholds when there were triggered. The research ascertained that witness tripwire files offer limited value as there is no way to influence the malware to access the area containing the monitored files.

Upadhyaya, R., Jain, A..  2016.  Cyber ethics and cyber crime: A deep dwelved study into legality, ransomware, underground web and bitcoin wallet. 2016 International Conference on Computing, Communication and Automation (ICCCA). :143–148.

Future wars will be cyber wars and the attacks will be a sturdy amalgamation of cryptography along with malware to distort information systems and its security. The explosive Internet growth facilitates cyber-attacks. Web threats include risks, that of loss of confidential data and erosion of consumer confidence in e-commerce. The emergence of cyber hack jacking threat in the new form in cyberspace is known as ransomware or crypto virus. The locker bot waits for specific triggering events, to become active. It blocks the task manager, command prompt and other cardinal executable files, a thread checks for their existence every few milliseconds, killing them if present. Imposing serious threats to the digital generation, ransomware pawns the Internet users by hijacking their system and encrypting entire system utility files and folders, and then demanding ransom in exchange for the decryption key it provides for release of the encrypted resources to its original form. We present in this research, the anatomical study of a ransomware family that recently picked up quite a rage and is called CTB locker, and go on to the hard money it makes per user, and its source C&C server, which lies with the Internet's greatest incognito mode-The Dark Net. Cryptolocker Ransomware or the CTB Locker makes a Bitcoin wallet per victim and payment mode is in the form of digital bitcoins which utilizes the anonymity network or Tor gateway. CTB Locker is the deadliest malware the world ever encountered.

2017-04-20
Ambedkar, M. Dayal, Ambedkar, N. S., Raw, R. S..  2016.  A comprehensive inspection of cross site scripting attack. 2016 International Conference on Computing, Communication and Automation (ICCCA). :497–502.
Cross Site Scripting attack (XSS) is the computer security threat which allows the attacker to get access over the sensitive information, when the javaScript, VBScript, ActiveX, Flash or HTML which is embedded in the malicious XSS link gets executed. In this paper, we authors have discussed about various impacts of XSS, types of XSS, checked whether the site is vulnerable towards the XSS or not, discussed about various tools for examining the XSS vulnerability and summarizes the preventive measures against XSS.
2017-03-08
Degenbaeva, C., Klusch, M..  2015.  Critical Node Detection Problem Solving on GPU and in the Cloud. 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded S. :52–57.

The Critical Node Detection Problem (CNDP) is a well-known NP-complete, graph-theoretical problem with many real-world applications in various fields such as social network analysis, supply-chain network analysis, transport engineering, network immunization, and military strategic planning. We present the first parallel algorithms for CNDP solving in general, and for fast, approximated CND on GPU and in the cloud in particular. Finally, we discuss results of our experimental performance analysis of these solutions.

Numan-Al-Mobin, A. M., Cross, W. M., Kellar, J. J., Anagnostou, D. E..  2015.  RFID integrated QR code tag antenna. 2015 IEEE MTT-S International Microwave Symposium. :1–3.

This paper presents an entirely new RFID tag antenna design that incorporates the QR (Quick Response) code for security purposes. The tag antenna is designed to work at 2.45 GHz frequency. The RFID integrated QR code tag antenna is printed with an additive material deposition system that enables to produce a low cost tag antenna with extended security.

2017-03-07
Nirmal, K., Janet, B., Kumar, R..  2015.  Phishing - the threat that still exists. 2015 International Conference on Computing and Communications Technologies (ICCCT). :139–143.

Phishing is an online security attack in which the hacker aims in harvesting sensitive information like passwords, credit card information etc. from the users by making them to believe what they see is what it is. This threat has been into existence for a decade and there has been continuous developments in counter attacking this threat. However, statistical study reveals how phishing is still a big threat to today's world as the online era booms. In this paper, we look into the art of phishing and have made a practical analysis on how the state of the art anti-phishing systems fail to prevent Phishing. With the loop-holes identified in the state-of-the-art systems, we move ahead paving the roadmap for the kind of system that will counter attack this online security threat more effectively.

Manesh, T., El-atty, S. M. A., Sha, M. M., Brijith, B., Vivekanandan, K..  2015.  Forensic investigation framework for VoIP protocol. 2015 First International Conference on Anti-Cybercrime (ICACC). :1–7.

The deployment of Voice over Internet Protocol (VoIP) in place of traditional communication facilities has helped in huge reduction in operating costs, as well as enabled adoption of next generation communication services-based IP. At the same time, cyber criminals have also started intercepting environment and creating challenges for law enforcement system in any Country. At this instant, we propose a framework for the forensic analysis of the VoIP traffic over the network. This includes identifying and analyzing of network patterns of VoIP- SIP which is used for the setting up a session for the communication, and VoIP-RTP which is used for sending the data. Our network forensic investigation framework also focus on developing an efficient packet reordering and reconstruction algorithm for tracing the malicious users involved in conversation. The proposed framework is based on network forensics which can be used for content level observation of VoIP and regenerate original malicious content or session between malicious users for their prosecution in the court.

Lin, C. H., Tien, C. W., Chen, C. W., Tien, C. W., Pao, H. K..  2015.  Efficient spear-phishing threat detection using hypervisor monitor. 2015 International Carnahan Conference on Security Technology (ICCST). :299–303.

In recent years, cyber security threats have become increasingly dangerous. Hackers have fabricated fake emails to spoof specific users into clicking on malicious attachments or URL links in them. This kind of threat is called a spear-phishing attack. Because spear-phishing attacks use unknown exploits to trigger malicious activities, it is difficult to effectively defend against them. Thus, this study focuses on the challenges faced, and we develop a Cloud-threat Inspection Appliance (CIA) system to defend against spear-phishing threats. With the advantages of hardware-assisted virtualization technology, we use the CIA to develop a transparent hypervisor monitor that conceals the presence of the detection engine in the hypervisor kernel. In addition, the CIA also designs a document pre-filtering algorithm to enhance system performance. By inspecting PDF format structures, the proposed CIA was able to filter 77% of PDF attachments and prevent them from all being sent into the hypervisor monitor for deeper analysis. Finally, we tested CIA in real-world scenarios. The hypervisor monitor was shown to be a better anti-evasion sandbox than commercial ones. During 2014, CIA inspected 780,000 mails in a company with 200 user accounts, and found 65 unknown samples that were not detected by commercial anti-virus software.

Kumar, B., Kumar, P., Mundra, A., Kabra, S..  2015.  DC scanner: Detecting phishing attack. 2015 Third International Conference on Image Information Processing (ICIIP). :271–276.

Data mining has been used as a technology in various applications of engineering, sciences and others to analysis data of systems and to solve problems. Its applications further extend towards detecting cyber-attacks. We are presenting our work with simple and less efforts similar to data mining which detects email based phishing attacks. This work digs html contents of emails and web pages referred. Also domains and domain related authority details of these links, script codes associated to web pages are analyzed to conclude for the probability of phishing attacks.

Lakhita, Yadav, S., Bohra, B., Pooja.  2015.  A review on recent phishing attacks in Internet. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT). :1312–1315.

The development of internet comes with the other domain that is cyber-crime. The record and intelligently can be exposed to a user of illegal activity so that it has become important to make the technology reliable. Phishing techniques include domain of email messages. Phishing emails have hosted such a phishing website, where a click on the URL or the malware code as executing some actions to perform is socially engineered messages. Lexically analyzing the URLs can enhance the performance and help to differentiate between the original email and the phishing URL. As assessed in this study, in addition to textual analysis of phishing URL, email classification is successful and results in a highly precise anti phishing.

2017-02-27
Santini, R., Foglietta, C., Panzieri, S..  2015.  A graph-based evidence theory for assessing risk. 2015 18th International Conference on Information Fusion (Fusion). :1467–1474.

The increasing exploitation of the internet leads to new uncertainties, due to interdependencies and links between cyber and physical layers. As an example, the integration between telecommunication and physical processes, that happens when the power grid is managed and controlled, yields to epistemic uncertainty. Managing this uncertainty is possible using specific frameworks, usually coming from fuzzy theory such as Evidence Theory. This approach is attractive due to its flexibility in managing uncertainty by means of simple rule-based systems with data coming from heterogeneous sources. In this paper, Evidence Theory is applied in order to evaluate risk. Therefore, the authors propose a frame of discernment with a specific property among the elements based on a graph representation. This relationship leads to a smaller power set (called Reduced Power Set) that can be used as the classical power set, when the most common combination rules, such as Dempster or Smets, are applied. The paper demonstrates how the use of the Reduced Power Set yields to more efficient algorithms for combining evidences and to application of Evidence Theory for assessing risk.

2017-02-23
K. Pawar, M. Patil.  2015.  "Pattern classification under attack on spam filtering". 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). :197-201.

Spam Filtering is an adversary application in which data can be purposely employed by humans to attenuate their operation. Statistical spam filters are manifest to be vulnerable to adversarial attacks. To evaluate security issues related to spam filtering numerous machine learning systems are used. For adversary applications some Pattern classification systems are ordinarily used, since these systems are based on classical theory and design approaches do not take into account adversarial settings. Pattern classification system display vulnerabilities (i.e. a weakness that grants an attacker to reduce assurance on system's information) to several potential attacks, allowing adversaries to attenuate their effectiveness. In this paper, security evaluation of spam email using pattern classifier during an attack is addressed which degrade the performance of the system. Additionally a model of the adversary is used that allows defining spam attack scenario.

2017-02-14
A. Oprea, Z. Li, T. F. Yen, S. H. Chin, S. Alrwais.  2015.  "Detection of Early-Stage Enterprise Infection by Mining Large-Scale Log Data". 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. :45-56.

Recent years have seen the rise of sophisticated attacks including advanced persistent threats (APT) which pose severe risks to organizations and governments. Additionally, new malware strains appear at a higher rate than ever before. Since many of these malware evade existing security products, traditional defenses deployed by enterprises today often fail at detecting infections at an early stage. We address the problem of detecting early-stage APT infection by proposing a new framework based on belief propagation inspired from graph theory. We demonstrate that our techniques perform well on two large datasets. We achieve high accuracy on two months of DNS logs released by Los Alamos National Lab (LANL), which include APT infection attacks simulated by LANL domain experts. We also apply our algorithms to 38TB of web proxy logs collected at the border of a large enterprise and identify hundreds of malicious domains overlooked by state-of-the-art security products.